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Using This Manual

Welcome to SystemBuild

Congratulations on purchasing SystemBuild™, the industry’s most powerful system
modeling and simulation package. For your convenience, please read the brief sec-
tions that follow, so you can make the most efficient use of the product and its doc-
umentation.

Scope

This guide provides extensive user information on nearly every aspect of System-
Build, with emphasis on the SystemBuild Catalog Browser, SuperBlock Editor, and
simulator. Exceptions are as follows:

■ Although the SystemBuild Blocks and SystemBuild functions and commands
are introduced here, they are discussed in detail in the online help.

■ The STD Editor is covered in the SystemBuild State Transition Diagram Block
User’s Guide.

■ The Xmath Basics explains how to use the Xmath® analysis and design pack-
age. SystemBuild is closely tied to Xmath. This manual assumes you have
knowledge of basic Xmath capabilities such as plotting, printing, Xmath com-
mand and function syntax, and MathScript programming.
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Conventions

This sections describes the visual conventions used in this document.

Font Conventions

This sentence is set in the default text font, Bookman Light. Bookman Light is used
for general text, menu selections, window names, and program names. Fonts other
than the standard text default have the following significance:

Format Conventions

This manual uses special formatting conventions to present sample procedures
(syntax, code or programming examples) and sample input/output.

Sample Procedures

Example 1 on page xxv shows the formatting convention for sample procedures,
code, and programming examples.

Courier : Courier is used for command and function names, file names,
directory paths, environment variables, messages and other
system output, code and program examples, system calls,
prompt responses, and syntax examples.

bold Courier : bold Courier  is used for input (anything you are expected to
type in).

italic: Italics are used in conjunction with the default font for empha-
sis and publication titles.

Italics are also used in conjunction with Courier  or bold
Courier  to denote placeholders in syntax examples.

Bold Helvetica
narrow:

Bold Helvetica narrow font is used for buttons, fields, and icons in a
graphical user interface. Keyboard keys are also set in this font.
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EXAMPLE 1: Code Sample

command RENUMBER
[ids=blocklist]=querysuperblock();len=length(ids);
[sids,idx]=sort(ids’,{increasing});

for i=1:len
  blk=sids(i);
  modifyblock blk,{id=i}
SBADISPLAY, {refresh}
endfor
endcommand

Mouse Conventions

This document assumes you have a standard, right-handed three-button mouse.
From left to right, the buttons are referred to as left, middle, and right. All instruc-
tions assume the left mouse button unless otherwise noted.

Note and Caution Conventions

Within the text of this manual, you may find notes, cautions, and warnings. These
statements are used for the purposes described below.

NOTE: Notes provide special considerations or details which are important to the
procedures or explanations presented.

CAUTION: Cautions indicate actions that may result in possible loss of work
performed and associated data. An example might be a system
crash that results in the loss of data for that given session.

click Press and quickly release a mouse button. The left button is as-
sumed if click is used without a button designation. For example,
“click OK”.

double–click Click a button twice in quick succession.

drag Place the cursor over an object, then hold down the appropriate
mouse button while moving the mouse. Release the button to com-
plete the operation.
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Support

You can contact MATRIXX Technical Support in any of the three ways listed below.
When Technical Support responds, you will be given a Call ID specific to the prob-
lem you have reported. Please record the Call ID and use it whenever you contact
Technical Support regarding the issue.

■ Submit a problem report via the ISI web site using the following URL:

http://www.isi.com/Support/MATRIXx

This is the preferred method, as it is the most traceable; your problem report
will be automatically entered into our support database.

■ Send an e-mail to mx_support@isi.com. We can serve you better if you mail us
details on your configuration and the circumstances under which your problem
occurred. We provide an ASCII file that you can use as a template for your e-
mail to support; it can be found in:

$MATRIXX/version/v6support.txt

For example, if you have Xmath running you can use the following Xmath func-
tion call to copy the template to the current working directory:

copyfile("$MATRIXX/version/v6support.txt")

■ Call 800-958-8885 (where 1-800 service is available) or 408-542-1930. Tele-
phone support hours are 7:00 a.m. through 5:30 p.m. PST, Monday through
Friday. We can respond more efficiently if you are ready to provide the informa-
tion requested in $MATRIXX/version/v6support.txt  at the time you call.

Using the ISI FTP Site

If your problem involves scripts or model file(s), Technical Support may ask you to
FTP your files to us for further examination.

1. Connect to the ISI FTP site:

ftp ftp.isi.com

2. Log on as anonymous, and supply your e-mail address as the password.

3. Change to the /incoming directory:

cd /incoming
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4. Use put or mput to specify the file(s) you are transferring. When the transfer is
complete, quit.

5. Send an e-mail message to Technical Support that states the Call ID (if avail-
able), the exact name(s) of the file(s) you put in /incoming, and the approximate
time you made the transfer; alternatively, call 800-958-8885 (where 1-800 ser-
vice is available) or 408-542-1930 and provide this information. It will be a min-
imum of 15 to 20 minutes before the transferred file(s) will pass through the
firewall.



1

1-1

1 Introduction

1.1 Overview

The SystemBuild design environment plays a central role in the MATRIXX® Prod-
uct Family (Figure 1-1).

Xmath

RealSim Series
DocumentIt

numerics graphics
programming

document generation

rapid prototyping

data handling

SystemBuild

simulation, validation, and

visual or script-driven

external
user code

generated
code

AutoCode
code generation

executables

FIGURE 1-1 The MATRIXX Product Family

real-time
code

model documentation

customization

model design
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SystemBuild provides a hierarchical catalog browser and other organization tools to
help manage your models and model data. You can easily reuse or share models you
create.

Whether your design is simple or complex, SystemBuild’s user-friendly graphical in-
terface and extensive library of blocks, utility functions, and tools make it the fast-
est way to express an engineering concept as a graphical model; a model design can
be validated immediately using SystemBuild analysis and simulation tools.

Although SystemBuild capabilities are extensive, the interface is purposely open
and flexible, so that you can do even more. You can implement your own commands
and functions, create your own blocks, and link in external code. You can also cus-
tomize the simulation environment.

This manual introduces you to SystemBuild’s many features. It focuses primarily on
model building and editing tasks, object relationships, and conceptual descriptions
of complex topics such as analysis and simulation. For convenient descriptions of
individual blocks, block dialogs, and the user interface, see the context-sensitive
online help. For information on using the help, type help help in the Xmath com-
mand area.
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2 Starting SystemBuild and
Using the Catalog Browser

Xmath is the entry point to the MATRIXX product family. SystemBuild makes use of
Xmath’s numerical analysis, graphics, data handling, and file management capabil-
ities. SystemBuild is launched from Xmath. The first window to appear is the
SystemBuild Catalog Browser.

A SystemBuild catalog is a complex storage structure that can contain models,
model data, SuperBlock and block parameters, and other objects unique to System-
Build. The Catalog Browser handles communication between SystemBuild, Xmath,
and the operating system; it also manages the interrelationship of objects within the
catalog. The Catalog Browser provides an interactive way to create, edit, view, and
organize catalog objects. The browser is the entry point to the SystemBuild Editor.

This chapter guides you through basic Catalog Browser tasks.

2.1 Starting and Exiting SystemBuild

You must start SystemBuild from the Xmath command window.

Starting SystemBuild

In Xmath, select Window→SystemBuild, or type the following command in the com-
mand area:

build

The Catalog Browser will appear. The BUILD command also allows you to specify a
SuperBlock name. This syntax is:

build "SB_Name"

SB_Name is the name of a SuperBlock in string form.
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■ If SystemBuild is not running, it will be launched, and a new continuous Super-
Block of the specified name will be launched.

■ If SystemBuild is running, and a SuperBlock with the specified name is in the
current catalog, the SuperBlock will be displayed in the editor.

■ If SystemBuild is running, but the specified SuperBlock doesn’t exist, a new
continuous SuperBlock by that name will be created and displayed.

Exiting SystemBuild

To exit SystemBuild from the Catalog Browser, select File→Exit. You are asked if
you want to save your work before exiting. If you answer yes, the Catalog Browser
Save dialog will appear. Push the Help button on the dialog if you need assistance.

Exiting from the Catalog Browser will leave Xmath running. To exit all MATRIXX

processes at once, go to the Xmath command Window and select File→Quit from the
Xmath Command Window, or, type Quit in the Xmath Command Window command
area. Note, you will be prompted to save, but only a full save to save.xmd will be
performed in this circumstance.

2.2 Loading Data

This section discusses Xmath and SystemBuild load methods, and uses an example
to explain how to selectively load data using the Advanced Load dialog. The data
loaded in Example 2-1 on page 2-3 will be used throughout this chapter.

2.2.1 Xmath Load Command

The LOADcommand can load an entire file, or selectively load Xmath, SystemBuild,
or Usertype information. The basic syntax is:

LOAD {xmath, build, usertype} "fileName"

To see the online help for the load command, type help load in the Xmath com-
mand area.

2.2.2 Catalog Browser Load Dialog

In the Catalog Browser, select File→Load. Click the Help button for information on
using this dialog.
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EXAMPLE 2-1: Loading Portions of a Catalog

1. Copy a data file from the SystemBuild examples directory to your current work-
ing directory. In the Xmath command area, type:

copyfile "$SYSBLD/examples/manual/cb_ex1.cat"

This file will be referred to throughout the chapter.

2. To start SystemBuild from Xmath, select Windows→SystemBuild. The Catalog
Browser and the SystemBuild Editor are launched.

3. In the Catalog Browser, select File→Load. When the Load dialog appears, select
the file cb_ex1.cat . This catalog file contains the folders SuperBlocks, State
Diagrams, DataStores, and Components; these objects are described in full
elsewhere in this manual. The most common action is to load an entire catalog,
however, in this example we’ll load what we need a piece at a time.

4. To view the contents of the catalog before loading it, Click the Advanced button.
The Advanced Load dialog appears; by default, an alphabetical listing of all Su-
perBlocks in the catalog is displayed on the right.

In the Table of Contents, each folder contains a listing of different object types.
Click on each different folder to see what it contains.

5. Check the Load Hierarchy box. SuperBlocks can contain other SuperBlocks, form-
ing a SuperBlock hierarchy. Checking this option ensures that if you load a sin-
gle SuperBlock, all SuperBlock elements included in its hierarchy, including
State Diagrams or DataStores, will be loaded as well (it does not affect objects
other than SuperBlocks, such as components, libraries, STDs, or DataStores
that are not included in diagrams).

a. Select “continuous automobile.”

b. To select an additional SuperBlock, hold down the Control key and click on
Cruise Control System. Note that multiple SuperBlocks are selected be-
cause the Hierarchy button is pushed. Continue selecting SuperBlocks un-
til all SuperBlocks are selected.

c. Select Apply  to load all selected SuperBlocks.

6. Select the Components folder. Select the component “nlinteg” and click Apply to
load it.

7. Click OK to complete the advanced load.
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Now the default appearance of the Catalog Browser (with SuperBlocks selected) is as
shown in Figure 2-1.

2.3 Understanding Catalogs

All data is loaded into the Main catalog (the Catalog name is shown directly above
the left pane; see Figure 2-1). The Main catalog has four folders: SuperBlocks, State
Diagrams, DataStores, and Components. These objects must all have discrete
names. Libraries are shown as a separate catalog.

SuperBlocks

SuperBlocks are the most commonly used objects and will be examined throughout
this chapter. A SuperBlock is a collection of primitive blocks that can include State
Transition Diagrams (STDS), DataStores, and references to other SuperBlocks. A
specific SuperBlock is only defined once in a catalog; references can then be made
to it in multiple locations; these references can be thought of as instances of the Su-
perBlock.

When a SuperBlock contains references, they are referred to as “children”, and the
SuperBlock itself is called the “parent”. This parent/child nesting forms a Super-
Block hierarchy. A SuperBlock at the top of a hierarchy is called a top-level Super-
Block; it has no parent. Chapter 3 describes how to create SuperBlocks and

FIGURE 2-1 Catalog Browser View of Data from cb_ex1.cat
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SuperBlock References; Chapter 5 describes how the different types of SuperBlocks
influence a model’s timing.

State Diagrams

STDS graphically implement finite state machines. These objects are documented in
the State Transition Diagram User’s Guide.

DataStores

DataStores provide global data storage.

Components

A component is an encapsulated SuperBlock hierarchy. In the Catalog Browser,
each component forms a separate catalog; the encapsulation of a SuperBlock into a
component circumvents the restriction that all catalog elements must have a unique
name. Although the component must have a unique name, objects encapsulated
within it are not visible to other catalogs because a component has its own scope.
Components are discussed in detail in Chapter 17.

Libraries

Libraries are SystemBuild model files that are not loaded into SystemBuild.

2.4 Browsing a Catalog

This section introduces some of the ways you can view and organize catalog items.
Load the model as described in Example 2-1 on page 2-3. As seen in Figure 2-1 on
page 2-4, the Catalog Browser has two panes. The left pane displays the Catalog
view, and the right pane shows the Contents view. There are two display modes us-
ing the Catalog and Contents views. When you select one of the labels in the Catalog
view (SuperBlocks, State Diagrams, DataStores, etc.), a listing of all currently de-
fined catalog items of the selected type will be displayed in the Contents view.

EXAMPLE 2-2: Working with Catalog Views

1. List all SuperBlocks:

● Click on the label SuperBlocks in the Catalog view. The Contents view will dis-
play all currently defined SuperBlocks in the Catalog.

● Click on the other catalog labels to view all currently defined Datastores,
STDs, and Components in the catalog.
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2. List all top-level SuperBlocks:

Each label in the Catalog view is preceded by a + symbol. To list all top-level Su-
perBlocks, click on the + symbol next to the label SuperBlocks .

Select one of the top-level SuperBlock names to view the SuperBlock contents in
the Contents view. SuperBlocks are containers that organize and describe
blocks. Blocks perform the actual work in a system; they are referred to as
“functional blocks” or “primitives”. For primitives the Contents view displays a
simple block icon and the block type.

3. Navigate a SuperBlock hierarchy:

Each top-level SuperBlock (shown as a folder preceded by a +) has child items
you can view in the Contents view (the right window pane). Click on the + sym-
bol to expand a subhierarchy. The symbol will change to a minus sign (-); click-
ing on the minus sign compresses the hierarchy.

● Select a folder and its contents will be listed in the Contents view.

● To expand all levels a hierarchy, select a SuperBlock and choose Edit→Hi-
erarchy Select Mode. Alternatively, click the  icon.

4. Open the State Diagrams and DataStores folders.

DataStores and State Diagrams are primitive blocks, therefore the contents are
displayed directly in the Catalog view; no information is displayed in the Con-
tents view.

5. Expand the Components hierarchy.

Select nlinteg , then select View→Component Catalog, or select a component,
right-click, then select Component Catalog. The Catalog view changes from
Main to nlinteg, and the Contents view changes accordingly. To return to the
main catalog, select View→Main Catalog, or right-click then select Main Cata-
log.

6. Adjust the sizes of the panes to accommodate your data:

a. To change the width of the panes, widen the window or adjust the pane
width. This task is slightly different on UNIX and Windows:

UNIX Click on the small square button towards the bottom of the di-
viding line between the Catalog and Contents view, and drag
horizontally.
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b. In the Contents view, you can change the width of each column. Click di-
rectly on the dividing line and drag left or right.

7. Sort the Contents view:

By default, items in the Contents view are displayed in alphabetical order by
name. Click on the heading of any column to reverse the sort order. For exam-
ple, display the Controller Logic SuperBlock, and click on the ID header; the
blocks are sorted by ID number, from lowest to highest.

Figure 2-2 shows the Catalog Browser with expanded Catalog hierarchies and mod-
ified contents view.

Windows Click directly on the dividing line between the panes and drag
horizontally.

FIGURE 2-2 Expanded Hierarchies and Adjusted Contents View (Windows)

catalog name contents name drag divider to

drag left/right to change pane width

collapse
hierarchy

expand hierarchy

change width

click a column title to sort
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2.5 Saving Data

This section describes how to save the current model. You can save your catalog
from both Xmath or the Catalog Browser. In addition, SystemBuild has an auto-
matic save feature, AutoSave, that automatically saves your catalog data at a speci-
fied interval.

Xmath SAVE Command

You can save any combination of Xmath and SystemBuild data in ASCII or binary
format using the Xmath SAVE command.

The general syntax is:

SAVE "fname" {xmath, build, usertype, superblock="name", hierarchy}

For a full description, see the online help for SAVE. Briefly, each keyword specifies a
subset of data to be save. The default behavior is inclusive, as demonstrated in the
following syntaxes:

Catalog Browser Save Dialog

In the Catalog Browser, select File→Save As. This will raise the SaveAs dialog; the
basic functionality is identical to that of the SAVEcommand, with the exception that
the default save format is ASCII. Push the Save dialog Help button for a detailed ex-
planation.

Save Selected

One capability is extended. The Xmath SAVEcommand allows you to specify a single
SuperBlock hierarchy to be saved. In the Catalog Browser you can selectively save
multiple SuperBlock hierarchies. Note, the selection(s) must be made before invok-

SAVE {ascii} Saves all to save.xmd  (default) in ASCII. (The default
Xmath SAVEformat is binary; you must specify ascii if
you need to share saved catalog files across platforms.)

SAVE "fname" Saves all data to a file you specify.

SAVE "fname" {build} Saves all SB data, including and usertypes (see
Section 15.5).

SAVE "fname" {superblock="sbname",hierarchy}

Saves the specified SuperBlock, all SuperBlocks in its
subhierarchy, and all Xmath data.
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ing the Save dialog; when the dialog is raised you must specify the Selected selection
mode. Example 2-3 demonstrates this process:

EXAMPLE 2-3: Saving Data

In this example you will save the file you loaded earlier (Figure 2-2 on page 2-7) in
two ways: saving all catalog data, and saving selected catalog items.

1. Save everything.

With nothing selected (click on the Main catalog to deselect any selected items),
select File→SaveAs. Make sure that every option is set to All and the selected
format is ASCII. Specify the following filename: cb_ex1_sel.cat . Click OK.

2. Perform a hierarchical selective save.

Start from the Catalog Browser.

a. Select Edit→Hierarchy Select Mode.

b. Click on Cruise Control System; all objects in this system hierarchy will be
highlighted.

c. Select File→SaveAs. In the Save dialog, go to the SuperBlock option and
choose Selected . (If you don’t enable this option, your preselections will be ig-
nored and all data will be saved.) Specify the name cb_ex1_ccs.cat. Click OK.

The preselected objects will be saved in the specified file.

SystemBuild AutoSave Feature

SystemBuild has an automatic save capability that can be activated by resetting the
SystemBuild defaults from the Xmath command area using the SETSBDEFAULT
command. Two parameters, autosavefile and autosavetime, must be speci-
fied, and both must have value (they cannot be null/zero) for the autosave to take
place. autosavetime is the number of seconds between saves; autosavefile
specifies the name of the file in which the catalog data will be saved.

The AutoSave feature saves catalog data only; Xmath data or Usertypes
(Section 15.5) are not supported in AutoSave.

Autosave is disabled by default; to enable it every time you start SystemBuild, add
the SETSBDEFAULTcommand to your startup.ms file. For more on this feature, go
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to the Xmath command area and type help SETSBDEFAULT then look at the help on
the autosavefile  and autosavetime  keywords.

EXAMPLE 2-4: Using AutoSave

1. The following Xmath command will start AutoSave:

SETSBDEFAULT {autosavefile="autosave.cat",autosavetime=3600}

After entering the command, go to the Catalog Browser and select View→Re-
fresh to update the new values. AutoSave is now set to save all Catalog Data to
a file named autosave.cat  every 60 minutes.

2. To change the save time interval to every two hours, type:

SETSBDEFAULT {autosavetime=7200}

Select update in the Catalog Browser to activate the new interval.

3. To check the current AutoSave settings type the following.

SHOWSBDEFAULT {autosavefile,autosavetime}

4. To turn off AutoSave, set autosavetime to 0 and refresh the Catalog Browser,
type:

SETSBDEFAULT {autosavetime=0}

2.6 Accessing the SystemBuild Editor

2.6.1 Using the Catalog Browser Quick Access Menu

The Quick Access menu is a special feature to speed up your SuperBlock editing
tasks; this menu has the same functionality as the Edit menu on the menu bar. To
raise the Quick Access menu, do the following:

Note that menu items may be disabled depending on the preselected object(s). In
particular, if the hierarchy select mode is enabled, most Quick Access menu items
will be disabled, as the selections are only valid if a single object is selected.

UNIX Right-click on an object; drag to select a menu item.

Windows Right-click on an object and release; the menu appears. Select a menu
item.
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2.6.2 Opening a SuperBlock in the Editor

SuperBlocks listed in the Catalog Browser may be opened for editing using the
Quick Access menu.

EXAMPLE 2-5: Opening a SuperBlock

1. In the Catalog Browser Catalog View, click on the SuperBlocks folder. This will
list all currently defined SuperBlocks in the Contents view.

2. In the Contents View, select the first SuperBlock, “continuous automobile,” To
open this SuperBlock in an editor window, select Open in the quick Access
menu. (Note, you cannot open a SuperBlock from the Contents view unless the
SuperBlocks folder is selected in the Catalog view.)

3. SuperBlocks can also be opened directly from the Catalog view. Expand the Su-
perBlock hierarchy in the Catalog View, and use the quick access menu to open
the SuperBlock Cruise Control System to a new editor window.

Edited SuperBlocks

In the Contents view, observe that the icon for the Edited SuperBlocks has a red
check, indicating it is open in the editor. Each SuperBlock opened appears in a sep-
arate editor window.

■ You can edit up to 20 SuperBlocks simultaneously.

■ Each editor window title bar will display the scope of the currently edited object.
The scope specifies the object’s position within its catalog. It also makes it pos-
sible to differentiate between SuperBlock or Component references that appear
in the multiple editors.

■ The Catalog Browser Window menu provides the ability to iconify, deiconify, or
close all editors. The bottom of this menu displays a list of the currently edited
SuperBlocks. Because the name includes the scope, it may be truncated. To
view the scope information, select Window→Catalog Object Properties.

■ If a catalog object (a SuperBlock, STD, etcetera) is currently open in an editor
window, attempting to open the object will merely raise the editor that contains
it. You cannot edit the same object in multiple windows.
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2.6.3 Dragging and Dropping in the Catalog Browser

You can “drag and drop” objects from the Catalog Browser into the editor. This pro-
cess is slightly different across platforms:

 Make sure the editor window is visible before you start dragging.

Drag from the Catalog View

Dragging a SuperBlock from the Catalog view into an existing editor window saves
and closes the previous SuperBlock. The dragged object becomes the currently ed-
ited SuperBlock.

Drag from the Contents View

Dragging an object from the Contents view copies it into the currently edited Super-
Block. If you drag a SuperBlock definition into the editor, a SuperBlock reference to
the definition will be created instead.

EXAMPLE 2-6: Catalog Browser Drag and Drop Features

1. Select the top-level SuperBlock Discrete Cruise System in the Catalog view. Us-
ing the process defined for your operating system, drag the SuperBlock Discrete
Cruise System to any editor window.

2. You have loaded the SuperBlock into the editor; it has 3 blocks.

3. Select Discrete Cruise System Open Loop. From the right hand pane, drag the
SuperBlock reference Cruise Control System into the editor. Note, the Super-
Block does not open. A reference is created and it becomes part of the diagram.

UNIX Middle-click on a SuperBlock icon and drag it into an existing editor win-
dow.

Windows Left-click on a SuperBlock icon and drag it into an existing editor window.
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2.6.4 Creating a New SuperBlock

New SuperBlocks can only be created from the Catalog Browser. To create a new
SuperBlock, select File→New→SuperBlock. The SuperBlock Properties dialog will
appear.

1. You must give the SuperBlock a unique name. Click OK.

2. To force an update from the editor, Select File→Update in the editor window.

2.7 Updating Catalog Browser Data

When you edit a catalog item from the Catalog Browser (using rename, cut, copy,
etc.) the changes are immediately displayed in the Catalog. This is not true when
you modify a catalog item from the SystemBuild Editor. By default, editor changes
are not written to the catalog unless you change view to another object, load a file,
or analyze a model. There are several ways to force an update:

■ In the editor, type Control-U , select File→Update, or click the Update icon .

■ In the Catalog Browser, type F5, or select View→Update.

Only items updated to the catalog will be preserved with the Save As or AutoSave
features (see Section 2.5).

The remainder of this chapter consists of examples that modify the catalog used in
previous examples. It emphasizes using two special Catalog Browser capabilities;
the Quick Access menu (described in Section 2.6.1) and Drag and Drop. For details
on performing the same tasks from the menu or icon bar, see the online help for this
window (Help→Topics).

EXAMPLE 2-7: Creating New SuperBlocks and the Update Process

1. Create a new SuperBlock. In the Catalog Browser, select File→New→Super-
Block. The SuperBlock Properties form will appear.

2. Name the SuperBlock “NewSB”, change the type to Discrete, and click OK. A new
blank SuperBlock will appear in the editor window.

3. In the Catalog View, click on the SuperBlock label to display all currently de-
fined SuperBlocks; note that NewSB does not appear.

4. Type F5. The SuperBlock NewSB will now appear in the Catalog Browser Super-
Block folder.
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2.8 Editing Catalogs Using the Catalog Browser

The Catalog Browser is the gateway to the SystemBuild Editor. In its role as a data
manager, the Catalog Browser can operate on catalog elements individually, or as
hierarchies.

The editor is launched at the same time as the Catalog Browser, but it is not active
unless a SuperBlock (or STD) is being edited. To activate the editor you can create a
new SuperBlock or edit a SuperBlock that exists in the current catalog. Both tasks
are performed from the Catalog Browser.

2.8.1 Using the Tools Menu

Catalog Browser tools, as listed in the Tools menu, operate on the model hierarchy.
These tools are discussed in depth elsewhere, but you can try some of them using
the current Catalog:

■ SuperBlock transformations are fully explained in Chapter 5.

■ Component Tools (Make, Edit, Unmake) are fully explained in Chapter 17.

■ HyperBuild is discussed in the HyperBuild User’s Guide.

■ AutoCode, the AutoCode Code Generation tool is documented in the AutoCode
User’s Guide and AutoCode Reference.

■ DocumentIt, the document generation tool is explained in the DocumentIt User’s
Guide.

EXAMPLE 2-8: Transforming a SuperBlock

This example uses the editing techniques explained in Section 2.8.2 on page 2-15.

1. In the Catalog Browser catalog view, copy the SuperBlock “continuous automo-
bile”, and paste it into the catalog.

2. Rename the copy “discrete automobile”.

3. Select discrete automobile, then select Tools→Transform. The Transform Su-
perBlock dialog will appear.

4. From the Type drop-down menu, select Discrete. Select Transform Initial Condi-
tions. Click OK.

The new SuperBlock appears in the SuperBlock hierarchy.
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2.8.2 Modifying a Catalog

EXAMPLE 2-9: Modifying Catalogs

1. Select the Controller Logic folder. From the Quick Access menu, select Copy.
The object is copied to the clipboard.

2. From the Quick Access menu, select Paste to paste the contents of the clipboard
into the catalog. A folder named “Copy of Controller Logic” will be placed at the
top level.

3. Select Copy of Controller Logic, then select Rename from the Quick Access
menu. The Rename dialog will appear; supply the name “Modified Controller
Logic”. Make sure Rename All References is checked, and click OK.

4. Open the new block in the editor. Modify the SuperBlock as follows:

a. From the editor menu bar, select File→SuperBlock Properties. The Super-
Block properties dialog will appear.

b. Change the Sample Period to 0.01, and the Sample Skew to 0.01. Click OK.

5. Go to the Catalog Browser (from the editor you can select Window→Catalog
Browser); select the SuperBlock hierarchy to view the block information for top-
level SuperBlocks. Controller Logic and Modified Controller Logic still have the
same Period and Skew Values.

6. Because we are still editing this SuperBlock, the changes haven’t been written
to the Catalog Browser. In the Catalog Browser, select View→Update or type F5
to force the update.
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3 Editing SuperBlocks

The SystemBuild SuperBlock editor, referred to as simply “the editor”, is an interac-
tive design environment for creating and editing block diagrams. All block diagrams
start with a SuperBlock that contains one or more blocks. SystemBuild can edit up
to 20 SuperBlocks simultaneously, each displayed in a separate Editor window.
Each editor window instance can display up to 199 blocks. In addition, the Super-
Block editor provides easy access to analysis and simulation tools.

As mentioned in Chapter 2, the Catalog Browser manages the status and interrela-
tionships of SuperBlocks, blocks, and all other objects in the catalog. The Catalog
Browser initiates each editing session; from it you can create and edit a new Super-
Block, or open an existing SuperBlock and modify it, as described in Section 2.6 on
page 2-10. This chapter focuses on how to create and use SuperBlocks.

3.1 SuperBlock Hierarchies

Up to 199 blocks may be displayed in a SuperBlock editor window; although you
can view the entire diagram by scrolling the editor window, it may be inconvenient.
SystemBuild has a number of special features for creating a modular hierarchical
system.

SuperBlocks provide a way to simplify large block diagrams or to group blocks that
have a common purpose or common properties. The SuperBlock capability makes
hierarchical systems and subsystems possible.

In the context of the SuperBlock hierarchy there are two types of SuperBlocks: a
top-level SuperBlock, and a SuperBlock reference. A top-level SuperBlock has no
parent; any SuperBlocks it contains are its children. A single SuperBlock can be
used in multiple models within a catalog; each instance is called a reference; a
change made in the original top-level SuperBlock will propagate to all references.
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3.1.1 SuperBlocks and Functional Blocks

SuperBlocks do not perform direct functional actions. They are hierarchical entities
that define the timing properties for functional blocks (and optionally other Super-
Blocks) below them in the hierarchy. SuperBlock timing methods are: Continuous,
Discrete, Enabled, Trigger, or Procedure. All non-continuous blocks have type-spe-
cific timing attributes. SuperBlocks also define the timing attributes of SystemBuild
subsystems. Primitive blocks derive their timings from the parent SuperBlock. See
Chapter 5 for more on SuperBlocks and timing.

The operation of SuperBlocks in hierarchies is illustrated in Figure 3-1, which
shows how SuperBlocks may be nested, one within another, each containing func-
tional blocks.

FIGURE 3-1 SuperBlock References in a SuperBlock Hierarchy
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When a SuperBlock icon appears in a block diagram, the icon represents an in-
stance of (or a call to) a SuperBlock with that name. Thus, any change in a Super-
Block goes into effect in all the places it is referenced. Figure 3-1 on page 3-2 shows
the SuperBlock “ubiquitous” occurring at different levels in a hierarchy.

3.2 Creating SuperBlocks

All SuperBlocks have the following properties:

■ A SuperBlock must have a unique name (within the current catalog) that starts
with an alpha character, is less than 32 characters long, and contains no punc-
tuation characters (such as semicolons, periods, etcetera). A SuperBlock’s name
is its sole method of identification.

■ A SuperBlock must contain at least one block. The blocks within a SuperBlock
can be basic functional blocks, or references to different SuperBlocks, compo-
nents, DataStores, or State Transition Diagrams (STDs).

■ A SuperBlock hierarchy is a global object (within a catalog), therefore its defini-
tion can be reused by calling it from within other SuperBlocks in your catalog; a
block that calls a SuperBlock’s definition is called a SuperBlock reference to, or
instance of, that SuperBlock hierarchy.

■ A SuperBlock definition that is not referenced elsewhere in the catalog is called
a top-level SuperBlock.

■ A SuperBlock’s outputs cannot be directly connected to its inputs; the output
signal must first pass through another block, see Figure 3-2:

The methods for creating SuperBlocks are discussed in the following subsections.

Legal Not Allowed

FIGURE 3-2 Legal and Illegal Connections

SuperBlock SuperBlock
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3.2.1 Creating a New SuperBlock from the Catalog Browser

To create a new SuperBlock, go to the Catalog Browser and select File→New→Su-
perBlock. The SuperBlock Properties dialog (Figure 3-3 on page 3-4) will be raised.
You must provide a name. A legal SuperBlock name is a string of no more than 32
characters. It must start with an alpha character, but it can also contain numbers,
spaces, and underscores. Punctuation characters, such as period, comma, percent,
or slash, are not allowed; if they are used they will be replaced with underscores.
Because SuperBlock names must be unique within a catalog, a fatal error will be is-
sued if an existing name is specified.

Click the Help button for a full description of each field. Click OK to finish.

The new SuperBlock will be opened in the SuperBlock editor; it will initially appear
as a top-level SuperBlock in the Catalog view. You must create at least one block in
the SuperBlock. To force an update of changes from the editor to the Catalog
Browser, type Control-U , select File→Update, or click the Update icon.

FIGURE 3-3 SuperBlock Properties Dialog
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3.2.2 Making a New SuperBlock from Existing Blocks

You can create a new SuperBlock by grouping existing functional blocks and Super-
Blocks in the SystemBuild Editor.

To create a SuperBlock, select the blocks that you want to move to a subhierarchy
(the children of the SuperBlock), then select Edit→Make SuperBlock. The new Su-
perBlock will be given the default name makesb#, where # is a system-supplied digit
that ensures a unique name. It will have the timing properties of the current parent
SuperBlock, and will initially appear in the Catalog view as a top-level SuperBlock.
To ungroup the blocks, select the SuperBlock then select Edit→Expand SuperBlock.
Note, you cannot use Expand SuperBlock within a container block; for a description
of container blocks, type help container  in the Xmath command area.

Figure 3-4 on page 3-5 illustrates this process.

To display the contents of the SuperBlock in the icon, place the cursor on the Su-
perBlock and press s until the User or Alternate icon is displayed.

FIGURE 3-4  Making a SuperBlock from Existing Blocks

1. Select the
child SuperBlocks

2. Select Edit→Make
SuperBlock
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3.3 SuperBlock Dialogs

All the information to define a SuperBlock is entered through its block dialogs. Un-
like other blocks, a SuperBlock has two kinds of block dialogs associated with it, the
SuperBlock Properties dialog and the SuperBlock Block dialog.

3.3.1 SuperBlock Properties Dialog

This dialog first appears when a SuperBlock is being created from the Catalog
browser. When a SuperBlock is being edited, you can raise this dialog with a single
click on the SuperBlock ID bar (the strip of SuperBlock information that appears
below the editor’s icon bars and above the diagram work area), or by selecting
File→SuperBlock Properties. Figure 3-3 shows a SuperBlock Properties dialog.

The Name, Inputs , and Outputs fields are always visible. A SuperBlock must have a
unique name. It must start with an alpha character and it cannot have more than
32 characters. Names can contain spaces and underscores, but spaces may be re-
placed by underscores. Punctuation characters such as period, comma, percent, or
slash are not allowed, and will be replaced with the underscore character if they are
used.

A SuperBlock is not required to have inputs and outputs. When they exist, however,
each represents a signal, sometimes called a data channel, for the current block di-
agram. The number of inputs and the number of outputs are independent; they do
not have to match.

The OK, Cancel , and Help buttons appear at the bottom of the form. OK accepts all
changes and closes the dialog; Cancel disregards all changes and closes the dialog.
Clicking Help raises the online help for the SuperBlock Properties dialog.

The SuperBlock Properties dialog has the following six tabs: Attributes, Code, In-
puts, Outputs, Document and Comment. An overview of the contents of each tab is
summarized in the remainder of this section.
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Attributes Tab

The Attributes tab allows you to set the timing attributes of the SuperBlock; these
attributes can be inherited by SuperBlocks lower in the hierarchy.

Code Tab

The Code tab is enabled when the SuperBlock type is Procedure and the procedure
class is Macro. Your macro is specified in the Macro Name editing area. You can
type directly in the editing area, or, you can push the Editor button to raise the cur-
rent editor. When you exit the editor, the contents will appear in the Macro Name
editing area.

The default editor for UNIX is vi. The default editor for Windows is Notepad. To
change the default editor, you must set the environment variable EDIT_COMMENT

Type The default type is continuous.

Continuous Continuous modeling is specified for the processes of the Su-
perBlock (the sample rate is 0). This is the default. See
Section 5.1.

Discrete SuperBlocks may run in discrete time, being either free-run-
ning or enabled. If discrete is selected, the Sample Period,
Sample Skew and Enable Signal fields are active; if an Enable
Signal is specified the block will execute only when the Enable
Signal is asserted. See Section 5.2.

Trigger The SuperBlock is triggered for execution (one-shot) by a spec-
ified trigger signal. See Section 5.3.

Procedure Procedure SuperBlocks allow users to implement stand-alone
procedures. They may inherit their timings from a parent
(Standard Procedures) or run untimed (Asynchronous). Possi-
ble procedure classes are standard, startup, background, in-
terrupt, macro, and inline. See Section 5.4.

Input
Naming

Controls the display of labels in the block diagrams in the SuperBlock
subhierarchy. By default all labels are inherited from the parent Super-
Block. If Enter Local Label Names is specified, local names are used. If
you are specifying a top-level SuperBlock you must select Enter Local La-
bel Names if you wish to specify labels in the Inputs tab.

Group ID Optional processor group ID for the current SuperBlock hierarchy. Dis-
abled if the type is continuous, enabled otherwise. Default is 0. See
Section 7.12.1 for an in-depth discussion.
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from the operating system command line, or within a startup script. See the follow-
ing examples:

The new text editor will not be attached until you restart Xmath. See Section 6.3 for
further details.

Inputs Tab

An input is a data channel or signal. The Inputs tab gives you the opportunity to
add a label or name the signal and specify its data type.

UNIX setenv EDIT_COMMENT emacs

Windows set EDIT_COMMENT=C:\Program Files\Accessories\wordpad.exe

Input Label The text you enter in the Input Label field can appear in the block dia-
gram if Show Labels (on the Display tab) is activated for the functional
block(s) that receive the inputs. If a SuperBlock receives the inputs,
Show Labels will display the labels, and if Propagate Labels is enabled
(available on the SuperBlock Block Display tab only) the parent labels
will be propagated down the hierarchy.

Labels also appear in the analyze output listing and the DocumentIt
documentation. The label you specify on the Inputs tab is also dis-
played on the Document tab.

Input Name You can specify a name for the input signal. This name will be associ-
ated with the signal in the AutoCode code listing; it has no impact on
the block diagram. See the AutoCode User’s Guide.

Input
DataType

This field allows you to assign a datatype for each input. Because
datatypes are normally set in functional blocks, these settings may be
ignored or overridden in the analysis phase. They will be used if this is
a top-level SuperBlock or if the SuperBlock type is Standard Proce-
dure. To assign a dataype on UNIX, click in the field; a menu of types
will appear. On Windows the types are in a drop-down box; press the
triangle beside the field to display the menu. See Section 4.5 on
page 4-19.

Input Radix This field is used solely for fixed-point data. If the Input DataType is set
to a signed or unsigned type, you can specify an input radix. See Chap-
ter 15.
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Outputs Tab

The Outputs Tab is read-only. SuperBlock output labels appear in output order,
and the name assigned is the name (if any) of the functional block the signal last
passed through, followed by the number of the signal (if there were multiple outputs
from that block).

Document Tab

The document tab displays a spreadsheet that allows you to describe the input sig-
nal by assigning text or values to each field. The Input Label and Input Name fields
are linked to the Inputs tab; a change in this location will occur there as well. Infor-
mation in this tab has no simulation or code generation effect; it is extracted to cre-
ate documentation when the DocumentIt document generation tool is used.

Comment Tab

The comment tab is an editing field. You can attach a comment that applies to this
SuperBlock and its subhierarchy, if applicable. The contents of this field may also
be accessed by DocumentIt. For an explanation of the Comment tab, click Help in
the SuperBlock properties dialog, then follow the hypertext link to the Comment tab
discussion. To change the default comment editor, see Section 6.4.

3.3.2 SuperBlock Block Dialog

The SuperBlock Block dialog is also referred to as the SuperBlock Reference or In-
stance dialog. It controls information specific to an instance of a SuperBlock within
a block diagram; a reference can be made using either of the methods in Section 3.4
on page 3-11.

Input
UserType

If you want to specify a User Defined Type (usertype) for this input,
specify it in this field. See Section 15.5. As with DataTypes, the type
may not be relevant for functional blocks within the diagram. Proce-
dure SuperBlocks lower in the hierarchy can inherit these values, how-
ever.

Input Scope The input scope can be set to either local (the default) or global. It is
only pertinent when the current SuperBlock type is Procedure and you
are generating code. The scope determines whether data in Procedure
SuperBlocks will be global or local in the generated code. See the Auto-
Code Reference for details on signal scoping.
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To view the SuperBlock Block dialog, select a SuperBlock icon and press Return.
See Figure 3-5 on page 3-11 for an example of a SuperBlock Block dialog.

The SuperBlock Block diagram has Parameters, Inputs, Outputs, Comment, Icon,
and Display tabs. The Parameters tab is disabled. Fields in the other tabs behave
the same as the equivalent tabs on functional blocks (see Section 4.3 on page 4-5).
The single exception is found on the Display tab.

The Propagate Label option can only be seen on the SuperBlock block, the Condition
block, and the BlockScript block. If enabled, this option dictates that labels from the
parent SuperBlock will be propagated to child SuperBlocks in the Subhierarchy,
and that signals passing through the SuperBlocks will pass the reference’s labels to
the following blocks.

Name The name field contains the name of the SuperBlock definition. If this is
a new instance (a SuperBlock icon pulled from the palette browser) the
default name is _SB. Spaces or underscore characters may be used as
word separators in SuperBlock names. Caution should be used in em-
ploying spaces, however, because processes other than MATRIXX may
remove or replace space characters arbitrarily.

When you enter a name, the system checks to see if the named Super-
Block exists in the catalog. If it does, a reference is made and the unde-
fined SuperBlock block icon becomes an instance of the named
SuperBlock; when the Catalog is updated, the reference will appear in
the hierarchy. If it does not exist, the block is given the name, but it re-
mains undefined and does not appear in the hierarchy.

Inputs and
Outputs

If the name field is the default, or specifies the name of a SuperBlock
that does not exist in the current catalog, you can specify inputs and
outputs.

If this is a reference to an existing SuperBlock, the number of inputs
and outputs cannot be altered.

ID The block ID of the SuperBlock block icon.

Instance
Name

You can supply a local name for this reference. If an instance name is
used, it is appended to the SuperBlock definition field and surrounded
by parentheses. For example, if a reference to a SuperBlock named Sys-
tem is given the instance name “variation1”, the name above the Super-
Block reference will be “System (variation1)”.

Xmath
Partition

Use this field to specify the name of an Xmath partition this SuperBlock
instance will use for loading and saving data.
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3.4 Creating a SuperBlock Reference

A SuperBlock definition is saved in the Catalog hierarchy. References are local in-
stances of a SuperBlock. If the SuperBlock is currently open in the editor you can
edit the SuperBlock properties; any changes are global and will affect the model at
every instance, SuperBlock instances are represented by a block; because the defi-
nition of the SuperBlock is elsewhere, you can only edit parameters local to the
block, such as the name, labeling, and icon appearance. The SuperBlock reference
dialog is shown in Figure 3-5; compare this to the SuperBlock Properties dialog in
Figure 3-3 on page 3-4.

You can form a SuperBlock reference from either the Catalog Browser or the Editor.

CAUTION: If a SuperBlock definition is removed from the catalog, refer-
ences to it will remain in the block diagram, connected as before,
but all information provided by the deleted definition is lost.
This means the SuperBlock reference reverts to the default state

FIGURE 3-5 SuperBlock Block Dialog that References an Existing SuperBlock
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(a continuous SuperBlock with default values). This is also true if
a definition is renamed (Section 3.4.2 on page 3-15) but refer-
ences to it are not. To create valid references in this situation,
you must create a new SuperBlock definition with the same
name, or, rename the references to refer to valid SuperBlocks.

Creating a Reference from the Catalog Browser

If a SuperBlock exists in the catalog, you can create an instance by dragging the Su-
perBlock from the Catalog Browser Contents view and dropping it in the editor:

1. To view all the SuperBlocks in the current catalog, click on the SuperBlocks
folder.

2. From the Contents view (the right side) select a SuperBlock icon and drag it into
the currently edited SuperBlock; on UNIX the select and drag are done with the
middle mouse button; Windows platforms use the left mouse button.

When you drop the reference a SuperBlock block appears in the editor, as
shown in Figure 3-6.

Creating a Reference from the Editor

1. Double-click in empty space to raise the Palette Browser.

2. From the SuperBlocks hierarchy, drag a SuperBlock icon into the Editor (on
UNIX use the middle button; on Windows use the left button). The SuperBlock
block icon will show Undefined by default.

3. To edit the block dialog, select the block and press Return.

● To reference an existing SuperBlock, supply the name of a SuperBlock
present in the catalog and any other parameters, and press return. The
block’s timing attributes are taken from the referenced SuperBlock; the Su-
perBlock reference name will be the name of the SuperBlock, followed by
the name of the instance (if any) in parentheses.

● You can leave the SuperBlock reference undefined, but you must put at
least one primitive block in it as a placeholder block (it doesn’t have to be
connected to anything).



SystemBuild User’s Guide Editing SuperBlocks

3-13

3

FIGURE 3-6 Drag from the Catalog Browser Contents View, Drop in the Editor
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3.4.1 Creating a Copy of a SuperBlock

You can create a copy of a SuperBlock in the SuperBlock Catalog from the Catalog
Browser or the Editor.

Creating a Copy with Copy and Paste

From the Catalog Browser, you can copy an existing SuperBlock, paste it into the
current catalog, and rename it.

1. Select an existing SuperBlock.

2. Right-click to raise the Quick Access menu, and select Copy.

3. Right-click to raise the menu again, and select Paste.

The new SuperBlock is named “Copy of <sbName>”, where sbName is the name of
the selected SuperBlock; the original SuperBlock remains in the hierarchy and the
copy initially appears as a top-level SuperBlock at the end of the SuperBlock hierar-
chy. This process is illustrated in Figure 3-7 on page 3-14. To rename the copy from
the Catalog Browser, select it then select Edit→Rename.

Creating a Copy by Modifying the SuperBlock Properties

You can edit a SuperBlock’s properties if the SuperBlock is currently displayed in
the editor. Single-click on the SuperBlock ID bar to raise the SuperBlock Properties
dialog (Figure 3-3 on page 3-4). If you change the SuperBlock Name field from this di-
alog, a copy of the current SuperBlock with the new name will appear in the Cata-
log. The original definition and any references to it are unaffected.

FIGURE 3-7 Copying a SuperBlock

Select and copy: Paste the copy into the catalog:
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3.4.2 Using Rename

Replacing a SuperBlock with Catalog Browser Rename

Because the Catalog Browser operates on a global level, renaming a SuperBlock
from the catalog browser will result in the destruction of the original.

■ If you rename a SuperBlock and specify Rename All References, the SuperBlock
definition and all references to it will be given the specified name. The original is
removed from the catalog. This is demonstrated in Figure 3-8 on page 3-15,
where the SuperBlock “ubiquitous” has been renamed to “U1”.

■ If you rename a SuperBlock and do not rename references, a copy of the original
SuperBlock with the new name appears at the top-level of the SuperBlock hier-
archy. All references to the original SuperBlock retain the old name but become
undefined; they will not appear in the catalog. Figure 3-9 on page 3-16 shows
the effect of “ubiquitous” being renamed to “Z1”. Although the undefined Super-
Blocks do not appear in the catalog, they will remain in the block diagram, and
they will still be named “ubiquitous”.

original catalog catalog after all references are renamed

FIGURE 3-8 Renaming a SuperBlock and All References
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Creating a Copy with Rename

■ When you change the Name field from a reference’s SuperBlock block dialog (Fig-
ure 3-5 on page 3-11) only that block is renamed.

■ If you rename a SuperBlock from the Editor, by simply opening its field in the
SuperBlock Block dialog, a call to an undefined empty SuperBlock with the new
name appears at the same spot in the hierarchy. The original SuperBlock be-
comes a top-level SuperBlock.

■ If you rename a SuperBlock from the Catalog Browser (select a SuperBlock,
then select Edit→Rename) you will be given the option to rename all references
to the new name.

original catalog catalog after SuperBlock is renamed

FIGURE 3-9 Renaming a SuperBlock Without Renaming References
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4 Editing Blocks

The SuperBlock editor operates on a SuperBlock that has been loaded into the Cat-
alog Browser (Section 2.2 on page 2-2) or created using one of the methods in
Section 3.2 on page 3-3. While SuperBlocks control the timing attributes of sub-
systems, functional blocks (also called primitive blocks) operate on a signal’s value.
A block diagram can include functional blocks, SuperBlock references (Section 3.4
on page 3-11), connections between blocks, external connections between blocks
and the SuperBlock’s inputs and outputs. This chapter contains simple examples
that demonstrate how to define, connect, and modify blocks and the block diagram.

Individual blocks are described in the online help. In the Xmath command area,
type help blocks  to see a list of blocks organized alphabetically and by palette.

4.1 Creating Blocks

Once a SuperBlock is created, you can access the SuperBlock Editor (Section 2.6 on
page 2-10), then create a model by placing blocks within the SuperBlock. The most
common way to create a block is to drag a block icon from the Palette Browser into
the SuperBlock Editor. (You can also create blocks using SystemBuild Access func-
tions and commands, as explained in Chapter 13 and the online help.)

A single palette browser supports all Editor windows. It can be accessed from the
Editor by any of the following methods:

1. Double-click the left mouse button in an open area of the Editor window.

2. Click on the Palette  icon in the Edit Toolbar.

3. Select Window→ Palette Browser.

4. Move the cursor to empty space and press d.
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On UNIX systems, drag the block from the palette to the workspace with the middle
mouse button. On Windows systems, use the left mouse button.

By default the Palette Browser displays the ISI Main palette; it can also display cus-
tom blocks and palettes, as described in Chapter 18. For a full description of Palette
capabilities, including loading and deleting palettes, see the Palette browser online
help.

Under some circumstances you will not be able to drag a given block into the editor.
Typically this occurs when you try to instantiate a strictly continuous or strictly dis-
crete block in a SuperBlock with conflicting timing. You must change the Super-
Block type or select another block.

Once a block is instantiated, it is defined from the block dialog. There are three
ways to raise the block dialog:

■ position the cursor over a block then press Return

■ select a block and click the Block Properties icon on the Editor toolbar

■ select a block, then select Edit→Block Properties

Only one block dialog can be open at any given time, regardless of the number of ed-
itors. The available tabs and fields vary from block to block, but in general, the set-
tings and values used to operate on an input signal are found on the parameters
tab. Figure 4-1 illustrates some block properties that can be displayed in the editor.

FIGURE 4-1 Block Properties Visible in the Editor

optional block name

external inputs

external outputs

states(X)

required block ID

input labels (inherited)

output labels entered locallyinternal outputs

output labels
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For block-specific information, see the online help. This chapter focuses on ele-
ments common to all blocks, e.g., tabs, fields, and how to use them.

4.2 Block Dialog Elements

This section discusses graphical elements (controls) found on SuperBlock and block
dialogs. All interactive dialogs have common graphical elements that provide clues
about how data should be entered. Data entry can take many forms. Depending on
the block type, you can type in strings and numeric values, Xmath variable names
that represent values, or Xmath statements that will calculate a value. You can also
choose settings by selecting dialog-specific menu items, or enabling or disabling
check boxes.

In SystemBuild, dialogs adapt to the block environment and settings whenever pos-
sible. For example, if a field is not applicable in the current environment, there will
be a visual indication, as shown in Figure 4-2 on page 4-4.

Figure 4-2 also demonstrates the principle of consistency between fields. Here, nine
inputs have been specified, so the dialog supplies nine fields for each column on the
Inputs tab. SystemBuild also synchronizes the Outputs tab fields and the Docu-
ment tab fields, to match the inputs and outputs specified. Each block has its own
parameters and its own dependencies between fields; these are discussed in the on-
line help for each individual block.
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Spin BoxesCombo Boxes

UNIX (Motif) Dialog

Windows Dialog

Disabled Text Fields

FIGURE 4-2 Motif and Windows Versions of the SuperBlock Dialog.

Enabled Text Fields
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Dialog contents are the same across platforms, but there are small differences in
the implementation. These differences are summarized in Table 4-1.

The online help documents dialog box navigation and shortcuts. To see this infor-
mation, type help shortcuts in the Xmath command area, and view the Block Di-
alog Shortcuts.

4.3 Block Dialog Fields

To access a block dialog, position the mouse over a block then press Return . Most
block dialogs have the fields Name, Inputs , Outputs , States , and ID across the top. The
block type is displayed at the top of the dialog window frame.

TABLE 4-1 Cross Platform Widget Appearance

UNIX Windows

Enabled Text Fields Title is black. Type directly
into the field.

Field is white. Type directly
into the field.

Disabled Text Fields Title is grayed out. Field is grayed out.

Combo Box
(drop-down box)

Click on the field to raise a
menu, drag to highlight an
item, then release.

Click on the down arrow to
raise a menu. Click on a
menu item to select it.

Spin Box Click the up arrow to incre-
ment the value; click the
down arrow to decrement.

Click the up arrow to incre-
ment the value; click the
down arrow to decrement.

To rapidly advance the
counter, click down on the ar-
row and hold; release when
the desired value is reached.

Name A name is optional for functional blocks. A legal name is an alphanumeric
string that starts with a alpha character and contains no more than 32
characters. The default is blank (no name).

Inputs The number of data flows or signals serving as inputs to the block.

Outputs The number of data flows output by the block.
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Fields that do not apply may be missing or grayed out, as shown in Figure 4-3.

All blocks have OK, Cancel , and Help buttons across the bottom. Clicking the Help but-
ton raises the help for the current block in the MATRIXX Help window. The block
help focuses on the Parameters tab fields.

The behavior of all other tabs is consistent among blocks. The nine possible tabs,
Parameters, Code, Inputs, Outputs, States, Document, Comment, Icon, and Dis-
play, are discussed in this section. To view a tab, click on the tab name.

States Dynamic blocks and certain other blocks have a number of “memory'' ele-
ments, referred to as states; in dynamic blocks the number of states is de-
termined by the order of the dynamics.

ID This block number will be given a default value by the system, but can be
changed to any unused number in the range [1: 199].

FIGURE 4-3 Gain Scheduler Block Dialog, Parameter Tab View
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4.3.1 Parameters

The Parameters tab fields vary widely among blocks. Data or settings information
for the block’s internal function are supplied here. Depending on the block, Param-
eters tab fields may require strings, vectors, or matrices. Numeric input may have
specific datatype requirements. Section 4.2 on page 4-3 reviews the different data
entry methods. It is common to have block-specific interdependencies between
fields. For example, in Figure 4-3 on page 4-6, the number of elements in the Break-
points field (three) determines the number of rows in the gain matrix.

4.3.2 Code

When present, the Code tab is used to accommodate multiple lines of text input.
Typical uses for the Code tab are equations, expressions, or logical statements. Ex-
amples of blocks that have a Code tab are: AlgebraicExpression, LogicalExpression,
Condition, BlockScript, IfThenElse and While, and the FuzzyLogic block. The syntax
for instructions placed in the Code tab is block-specific, so be sure to view the on-
line help for each block before using the Code tab. To change the editor in the code
tab, see Section 6.3.

4.3.3 Inputs

For primitive blocks, this tab displays the Input Name and Input Signal labels, if
any, inherited from previous blocks.

For SuperBlocks, this tab has Input Labels (which can be displayed in the Editor),
and Input Names (which cannot be shown in the editor). The Label is attached to the
signal, which enters the diagram as an external input.

Input names are optional, and used exclusively for generated code (see the Auto-
Code Reference). Input names are specified at the SuperBlock level as Input Labels,
then propagated to SuperBlocks or blocks further down the hierarchy. Output la-
bels, by contrast, are specified within each elementary block.

Examples of these fields are shown in Figure 4-2 on page 4-4. See Section 4.4.2 on
page 4-14 for tips on entering labels or names.

Input Name A legal name has up to 32 characters, starts with a letter, and can
contain  the characters A-z, the numbers 0-9, and underscores. The
Input Name will appear in the AutoCode-generated code for the block
or SuperBlock.
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4.3.4 Outputs

The Outputs tab is used to label and format block output data. You can display and
modify several output-related fields, including labels, names, and datatypes. Also, if
you choose a fixed-point data type, a Radix field and related fixed-point information
(read-only) are displayed near the bottom of the dialog.

Note that while input labels are inherited, output labels and names must be speci-
fied anew for each block. Like input names, output names do not appear in the
block diagram; they are of importance for code generation only.

Input Signal For primitive blocks, this read-only field shows the names of the exter-
nal inputs to the block. The numbers are the pin numbers of the in-
puts, numbered from the top of the block.

If the block is a SuperBlock, you can make the field writable as ex-
plained in page 4-15.

# This read-only field displays the number of this output pin on the
block icon, counting from the top.

Output Label Enter a label name in this field. If Show Labels is enabled in the
Display tab, the label will be displayed at the corresponding out-
put pin location in the block diagram. This label will also appear
in DocumentIt documentation.

Output Name To increase traceability in generated code, AutoCode users can
specify a name for the output signal. This name will never appear
in the editor.

Output Scope Select Local or Global scope for the output channel. This choice
impacts how the output is declared in the generated code; it has
no simulation effect. See the AutoCode Reference manual for more
information.

Output Address A text field, no more than 32 characters in length, that can con-
tain the memory address of a Global scoped channel. This address
has no simulation effect. See the AutoCode Reference manual for
more information.

Output DataType This field allows you to assign a datatype for each output. For
more detail on datatypes, see Section 4.5 and Chapter 15, “Fixed-
point Arithmetic”.

Radix If the Output DataType is Fixed-Point, this field may be enabled.
See Chapter 15.
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4.3.5 States

The States tab is only present in Dynamic blocks.

4.3.6 Document

The Document tab is only present in blocks with outputs. Its fields are used to an-
notate generated code, or are extracted by DocumentIt. The # (output number), Out-
put Label , and Output Name fields are tied to the corresponding fields in the Outputs
tab; a change to these fields on either tab updates both locations.

The Output Min , Output Max , Output Accuracy , Output Unit and Output Comment fields are
strictly for documentation; any values entered will appear in the AutoCode gener-
ated code.

4.3.7 Comment

The Comment tab is available on almost all blocks; it allows you to include a multi-
line comment in text form.

The main feature of this tab is a scrolling text area. This area has two purposes:

■ editing and displaying comments

■ defining and displaying User Parameter values.

Edit Comments

When Comments is selected, the scrolling text area is used to edit and display com-
ments. The user parameter list shown in the lower right pane is grayed out.

Overflow
Protection

The overflow protection setting is ignored during simulation (it is
forced to On) but, it significantly impacts code generation. If over-
flow protection is off, AutoCode C will not generate overflow pro-
tection code for the current block (assuming the output datatype
is fixed point). This option is not supported for Ada.

Output UserType If you want to specify a User Defined Type (usertype) for this out-
put, specify it in this field. See Section 15.5 on page 15-40.

State Name Optional. If entered, this name will appear in the AutoCode gener-
ated code.

State Comment Optional text string.
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The default editing mode is text, so, you can simply type text straight into the text
area. (To change the default text editor, see Section 6.3.)

Alternatively, you can create a comment in a supported document editor. By default,
the Editor combo box shows the text editors vi and xemacs, the Word binary format,
and the Word rich text format (rtf). Word formats are only supported on Windows
platforms. To add or remove applications from the Editor combo box, see
Section 6.4.

To enter a comment in an editor, select an editor from the Editor combo box, then
push the Launch button to raise it. Enter the comment, then close the editor when
you are finished. The text you created will be displayed in the comment tab. If the
editor is Word, the actual binary or RTF markup is displayed.

CAUTION: The | and ~ characters are reserved. If your editor is Word, you
cannot use the | or ~ characters in your comment text, not even
in RTF format. If you enter these characters, they will be
dropped.

Edit User Parameters

When User Parameters is selected, the text area is used to display or change User Pa-
rameters. User parameters are created in several ways:

■ Create a new user parameter from the Editing User Parameters dialog. To view
this dialog, press the Advanced  button.

■ Define a new user parameter using the SETSBDEFAULTS userparameters key-
word. These parameters are shown in the Default pane.

The text area is used to display or define the value of a userparameter.

Double-click on a user parameter to display it in the editor in which it was created.
You can redefine the value using the appropriate datatype. If you need to add, de-
lete, or rename a user parameter, press the Advanced  button.

4.3.8 Icon

The icon tab is present for all blocks. Chapter 16 explains how you can define or ref-
erence an icon using this tab.

4.3.9 Display

The Display tab appears for every block.
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Input Pins/Output Pins Display Mode

These fields determine how connections will be displayed for the current block.
Three modes are possible: Scalar, Vector, and Bundle.

The above behaviors also have special notation within the Connection Editor. See
Section 4.6 on page 4-28. Note that you can also change the display mode via pull-
downs in the SuperBlock Editor tool bar.

Show Labels

If Show Labels is checked, any inherited signal labels will be shown on the external in-
puts. If the receiving block is a SuperBlock reference or a Condition block, any input
label information is passed from external or internal outputs to the input signal
field.

Propagate Labels

Reference blocks (BlockScript, Condition, or SuperBlock blocks) have a checkbox
named Propagate Labels . This option determines whether output labels from blocks
contained in a Reference block are propagated into the Reference block’s output la-
bels. Only contained blocks that are connected to the Reference block’s external
outputs can propagate labels into the Reference block.

When Propagate Labels is checked, the contained block’s output labels are immediately
propagated, overwriting all output labels in the Reference block. Any change to the
contained block’s output labels will appear in the Reference block’s output labels.
You cannot make modifications to Reference block output labels when Propagate La-
bels  is checked.

When Propagate Labels is not checked, no propagation occurs. Turning off propagation
does not delete the reference block’s output labels. you can modify the reference
block’s output labels.

Scalar The default; displays each pin separately.

Vector Groups all consecutively labeled signals of the same type (see
Section 4.4.2 on page 4-14), displaying one line per group. If labels are
enabled, this option displays the root label for each group of signals.

Bundle Uses a single line to represent all inputs/outputs. The number of signals
in each bundle is displayed near each input/output bundle.
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Icon Color

The Icon Color field controls the color of the icon. Color is a positive or negative inte-
ger from 1-14. 0 indicates No Color. An unsigned or positive integer fills the block or
bubble with the specified color. A negative integer uses the specified color to draw
the object outline and the block name (the object is not filled).

Fourteen colors can be used, as listed in Table 1 on page 4-12.

For UNIX, these colors are approximate, as their values are based on the values
specified in your Sysbld  resource file (see Section 6.6 on page 6-8).

Icon Type

The Icon Type field controls the icon appearance; you can select Special , Alternate, User,
Simple, or Custom ; note, not all blocks have different views for each option. Special is
the default selection, and usually displays a descriptive word or picture. You can
also change the icon type at the block diagram level. When you select a block, its
icon type will be displayed on the SuperBlock Editor toolbar. With the block se-
lected, press s repeatedly to cycle through icon types. Alternatively, use the drop-
down menu on the tool bar to select a new type.

4.4 Using Block Dialogs

For most blocks, numerical data is entered via a block’s Parameters tab; depending on
the block, a scalar, vector, or matrix may be entered. For the most part, all other
tabs accept strings to define labels or comments, or specify code or equations perti-
nent to the block.

TABLE 1 Integer Values and Approximate Colors

Integer Color Integer Color

1 red 8 pink

2 green 9 yellowgreen

3 yellow 10 bluegreen

4 blue 11 ltblue

5 magenta 12 purple

6 cyan 13 brown

7 orange 14 gray
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4.4.1 Using the Matrix Editor

When a block requires data in the form of a vector or matrix, the dimension input is
determined by the block type and the numbers of inputs, outputs, or states, or
other block-specific considerations. As applicable, the block dialog provides a simple
matrix editor. Figure 4-4 shows a dialog with a two matrix editor fields: Input
Points, and Output Values. Note that both show the placeholder (...) in the input
field. To invoke the matrix editor, click on the field name, or click in the field itself.
The dimension of the matrix displayed below will vary according to the selected field.

Entering a Matrix

Data can be entered in the Parameter field or directly into the matrix editor. Matri-
ces are specified in the same manner as Xmath data: they are enclosed in square
brackets, with commas separating column elements, and semicolons separating
rows, e.g., [11,12;21,22].

To enter data, specify a matrix in the parameter field, or, type the values into the
matrix itself. When using the parameter field, note that you erase or overwrite the
(...); if the matrix input is accepted, the placeholder will reappear; if there are prob-

FIGURE 4-4 Matrix Editor Field in Dialog
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lems with the input, your expression will remain in the field, giving you an opportu-
nity to edit it. In addition to vector/matrix notation, you can use Xmath expressions
to supply matrix input.

For example, given a ConstantInterp block with 5 inputs and outputs, as shown in
Figure 4-4 on page 4-13, the following are acceptable inputs that can be typed in ei-
ther the parameter field or the 1,1 cell in the matrix editor (note, this block expects
the Input Points to be increasing).

■ The matrix editor does not allow illegal matrices to be entered. In the case
above, a decreasing matrix would be refused by the ConstantInterp block.

■ Sometimes the input meets the block criteria, but the dimension of the input is
incompatible. Depending on the block, the dialog may attempt to use the input
by changing the inputs, outputs, or states to match the input matrix. It may
also attempt to resolve the incongruity by cropping the matrix to fit the default
or current matrix dimensions.

Editing a Matrix

After a matrix has been created, you may alter it from within the matrix editor by
simply typing new values or Xmath expressions in either the parameter field or in
matrix cells. Given a 5x5 matrix, you can do the following:

4.4.2 Specifying Labels or Names

As shown Figure 4-7 on page 4-29, block dialogs allow you to enter optional output
labels for each block output. If output labels are inherited from a previous block,
they can be displayed in the block diagram. To do this, go to the receiving block’s
Display tab and push the Show Labels button. Alternatively, select the block and

matrix using vector notation: [1:5;6:10;11:15;16:20;21:25]

transposed matrix: [1:5;6:10;11:15;16:20;21:25]'

expression that results in a legal matrix: sort(rand(5,5),{incre})'

Alter a row: In 3,1, type: 1:5

Alter a column: In 1,5 type: [95:99]'

Change the entire matrix: In 1,1 of the Output Values matrix, type:

krone(1:5,[1:5]')
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press l (lower-case L), or select the block and click the Labels On/Off icon on the
tool bar.

The output labels are propagated to any blocks that receive the signal. The output
label on the sending block becomes an input signal label on the receiving block
(note this distinction: a label is defined at the source of a signal, and may be
changed locally, but a signal is assumed to originate elsewhere, and can only be
changed at the origin).

External inputs to a SuperBlock represent the first place where a signal is visible,
and may be labeled in the SuperBlock. To change an input signal label, in an ele-
mentary block, you must change the output label in the block that generates the
signal.

SuperBlock External Input Labels

By default SuperBlocks have the Input Naming field set to Inherit Higher-Level
Names; this disables the Inputs tab Input Label  field, prohibiting local changes.

You can replace the Input Label values with labels that are local to this SuperBlock
and (optionally) the hierarchy below it as follows:

1. Raise the SuperBlock properties dialog; in the Attributes tab Input Naming field,
select Enter Local Label Names.

2. Go to the Inputs tab and specify the local input labels.

3. To propagate the local signals down the hierarchy, open each SuperBlock. Go to
the Display tab and select Show Labels and Propagate Label.

The BlockScript block and the Condition block can also propagate their names to
blocks that receive their signals.

Creating Sequential Names for Vectors or Matrices

Although labels or names can be entered separately into each enabled field in the
Input or Output tab, SystemBuild vectoring provides a way to automatically a gen-
erate unique labels for each element in a vector. You can also create matrix labels by
assigning a unique name for each element in a matrix. For AutoCode users, labels
or names determine the structure of the output code; see the AutoCode Reference.
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Vectoring Signal Labels or Names

Vectoring can be used to generate unique labels or names for vectors. The syntax is:

string(s:f)

String is the constant part of the name (must be entered first), s is the starting
number, and f is the finishing number for the vector. The parentheses are required.
For example, lab(1:8)  will produce lab1, lab2, ... lab8.

■ Descending sequences are not supported.

■ If a vector longer than the list is specified, a vector of labels will be assigned, up
to the last (highest numbered) label field; that is, the numbering does not wrap
around to the top of the list. See Example 4-1.

EXAMPLE 4-1: Vectoring Labels

In the Catalog Browser, select File→New→SuperBlock. The SuperBlock Properties
dialog appears.

1. Name the SuperBlock ex2 and select Discrete.

2. Specify 9 inputs and 5 outputs.

3. Because this is a top-level SuperBlock, it has no parent to inherit labels from. In
the Input Naming field, select Enter Local Label Names.

4. Select the Inputs tab. Click into the first row of the Input Label field and type
ex2_a(1:3) then press return. Click into the fourth row of the Input Label col-
umn and type ex_2b(1:3) . In the seventh row, type ex_c(1:3) .

Your dialog should now resemble one of the dialogs in Figure 4-2 on page 4-4.

Signal Labels or Names for Matrices

The following matrix naming syntax will automatically create one label for each ele-
ment in a matrix:

string(sr:fr,sc:fc)

string is the constant part of the name (it must be entered first), sr and sc are the
starting row and column number, and fr and fc are the finishing row and column
for the matrix. The parenthesis are required, and the entries produced will be emit-
ted in row-major order. The total number of entries produced automatically will be
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(fr-sr+1)*(fc-sc+1) . For example, foo(1:2,1:2) produces the entries foo(1,1),
foo(1,2), foo(2,1), and foo(2,2).

The same result can be produced with the following alternate syntax:

string[ROWSxCOLS]

In the above the syntax string is the root of the name and it must appear first. ROWS
and COLSare integers giving the number of rows and columns in the matrix. x indi-
cates dimension, so foo[2x3] would create a create a 2x3 matrix whose entries are
foo(1,1), foo(1,2), foo(1,3), foo(2,1), and foo(2,2), and foo(2,3). In this case the matrix
dimension [2x3] will be displayed in the editor (assuming labels are on). The individ-
ual element coordinates can be viewed in the block dialog, or from the connection
editor.

Matrix Labelling Must Start at 1

Either syntax is only reliable when sr = sc = 1 (generate starting at the first row and
column positions). If you start at a location other than (1,1), the automatically gen-
erated labels will be “mangled”. You will recognize a mangled label by the presence
of underscores. For example, the mangled version of foo(3,1) would be foo_3_1.
These labels will not be recognized as matrix elements. One exception exists; if the
dimension of the matrix was properly specified at an earlier time, the matrix struc-
ture will be recognized; the labels will still be mangled, however.

For example, suppose you have a block with eight outputs. If you delete all the out-
put labels, go to the fifth output label box and type foo(3:4,1:2), the four output la-
bels will be mangled—they will not represent matrix elements. (You will get foo_3_1,
foo_3_2, foo_4_1, foo_4_2.) However, if you delete all the output labels (again), go to
the first output label box and type foo(1:2,1:2), then when you go to the fifth output
label box and type foo(3:4,1:2) you will get the expected (true) matrix element en-
tries.

■ Descending sequences (sr > fr or sc > fc) are not supported.

■ If a matrix with more elements that there are label fields (boxes) remaining is
specified, matrix element labels will be assigned, up to the last (highest num-
bered) label field; i.e., the numbering does not wrap around to the top of the list.

Example

1. In the Catalog browser, select File→New→SuperBlock.

2. In the SuperBlock Properties dialog, name the SuperBlock matrixExample and
make the type Discrete.
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3. Specify 12 inputs and 5 outputs.

4. Because this is a top-level SuperBlock, it has no parent from which to inherit
labels.   In the Input Naming field, select Enter Local Label Names.

5. Select the Inputs tab. Click into the first row of the Input Label field and type
a(1:3,1:2) then press return. Click into the seventh row and type b(1:5,1:1).

The resulting input tab is shown in Figure 4-5.

Shortcuts for Editing Labels or Names

This section contains shortcuts for editing existing labels. Wherever fields are writ-
able, you can change existing labels or names individually or use the vectoring matrix
syntax to overwrite multiple existing labels.The following table summarizes label editing
syntaxes.

FIGURE 4-5
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NOTE: Erase the current contents of the field before entering these commands:

4.5 DataTypes

The default output and parameter datatype for SuperBlocks and functional blocks
is Float. In SystemBuild, you can select the datatype for external inputs and block
outputs from the Inputs and Outputs tabs, respectively.

string(s:f) Starting from the cursor location, create unique names;
existing names will be overwritten.

string(s:f)& Insert new labels starting at this location, and displace
ensuing labels; some labels may drop off the bottom of
the list.

string(sr:fr,sc:fc) Starting from the cursor location, create unique names:
existing names will be overwritten. If results are not
part of a complete matrix, “string” will be mangled and
array notation not used.

string(sr:fr,sc:fc)& Insert new labels starting at this location, and displace
ensuing labels; some labels may drop off   the bottom of
the list. If results are not part of    a complete matrix,
“string” will be mangled and   array notation will not
used.

(1:n) Starting at the cursor location, erase consecutive labels,
where n is the number of fields you want erased.

(1:n)& Starting at the cursor location, insert n empty fields; en-
suing labels are displaced, but preserved.

(s:f) With your cursor in cell s , erase all fields through cell f .

(s:f)& With your cursor in cell s, erase all fields through cell f
and displace all ensuing labels.

&d Put the cursor at the end of the line or delete the empty
field before issuing this command. It deletes the current
label and advances all following labels by one to fill the
gap.

&dn n is a number indicating how many consecutive labels to
remove. For example, &d5 will deleted five labels includ-
ing the current one. The remaining labels will be ad-
vanced to fill up the space.
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The type associated with an input is inherited from the signal attached to the block
input pin and can only be modified at the source. Input signals originate from either
external SuperBlock inputs or outputs of other blocks.

Types associated with block parameters, on the other hand, are derived from the in-
put/output datatypes and therefore cannot be modified. The rules that describe
such type derivations are listed in Table 15-1 on page 15-23. The radix position of a
gain block that is used in a fixed-point context is an exception, because you can set
this value.

For a detailed description of the fixed-point arithmetic feature, see Chapter 15.

The SystemBuild datatype feature provides allows you to:

1. Create models that may require a mix of different datatypes. The user specifies
datatypes in the editor while defining individual blocks and SuperBlocks.

2. Perform an automatic block by block check of the compatibility of output
datatypes with input datatypes in a model. To do this use the typecheck key-
word in the analyze , sim , simout , creatertf , autocode , or documentit
commands.

3. Simulate models using the appropriate arithmetic behavior when mixed
datatypes are present. The keyword fixpt is provided as an option for the sim
command for this specific purpose.

4. Automatically generate code with proper type declarations for the model.

Datatypes can be monitored and modeled in simulation; the typecheck and fixpt
sim keywords are provided for this purpose. The typecheck keyword performs a
consistency check between input and output datatypes during the simulation anal-
ysis phase, The fixpt keyword enables fixed-point arithmetic, which supports
mixed datatypes. By combining 8, 16, and 32-bit types with signed and unsigned
properties, more than 300 datatypes can be created. The powerful fixpt keyword
propagates and performs checking on all datatypes encountered in the model.
Table 4-1 summarizes the simulation behavior when different combinations of
typecheck and fixpt are used. See Section 7.3 on page 7-8 and the sim online
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help for more about these keywords and how to use them. Note that both are off by
default, and the default simulation behavior is to treat all datatypes as float.

4.5.1 Traditional Datatypes

SystemBuild and AutoCode provide the user with a rich collection of built-in
datatypes for modeling, simulation, and code generation purposes. The available set
of datatypes is composed of the three traditional types, Float, Integer, and Logical,
as well as fixed-point datatypes. The set of fixed-point datatypes includes more than
300 distinct members. Each fixed-point type is uniquely specified as a signed/un-
signed type with two additional attributes: wordlength, and radix position.

Following the common microprocessor architectures, a fixed-point datatype may
have a wordlength of 8, 16, or 32 bits. The radix position is restricted to a value be-
tween -16 and 48).

The rest of this chapter deals strictly with the non-fixed-point method of datatype
checking. Depending on what is specified in the SystemBuild model, AutoCode will
declare variables with one of the following datatypes:

Floating point  — real-valued data is the default type for inputs and outputs. In Ada
and C code this type is referred to as RT_FLOAT.

Integer  — allows operation with whole numbers. In Ada and C code, this type is re-
ferred to as RT_INTEGER. SystemBuild model data which is declared
RT_INTEGER is rounded.

Logical — two-valued data is referred to as BOOLEAN or RT_BOOLEAN in Ada and C.

Attempting to produce efficient code, AutoCode takes advantage of the datatype
characteristics whenever possible. More appropriate algorithms may be generated
according to the datatypes specified.

TABLE 4-2 typecheck and fixpt in sim

sim options propagated if present?

typecheck fixpt float integer fixpt

true true yes yes yes

true false yes yes no

false false yes no no

false true yes yes yes
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To generate the desired declarations, the SystemBuild Editor sets datatypes for four
classes of data: SuperBlock external inputs, block outputs, block states, and block
parameters. The block parameters and states are specified by internal datatype
rules and require no intervention by the user. The datatypes for the SuperBlock ex-
ternal inputs and primitive block outputs are set explicitly in the SystemBuild editor
via the Inputs tab view in the SuperBlock Attributes dialog, and the Outputs tab
view in the primitive block dialog.

For each SuperBlock, the Inputs tab view in the Attributes dialog allows you to
specify the datatypes and input pin label names for the external inputs, and the
Outputs tab view is a read-only display, echoing the output labels on the primitive
blocks that define the external outputs from the SuperBlock.

In a symmetrical manner, for each primitive block you can use the Output tab view
to specify the datatypes and output pin labels for each block output. Specifically,
the primitive block output pin that is connected to an external output pin furnishes
the output label that appears in the Output tab view of the SuperBlock Attributes
dialog. (The SystemBuild Editor does not allow multiple primitive block outputs to
be connected to an external output pin.) Also, the Input tab view furnishes a read-
only display, echoing the input labels on the input pins, as specified in the Inputs
tab view of the SuperBlock Attributes dialog (if the input pin is connected to an ex-
ternal input), or the output of the previous primitive block (if the input pin is driven
from another primitive block).

The block parameter or state datatype rules usually depend on the datatypes of the
inputs or outputs of the block. Thus, these datatypes may be affected by what you
set in the SuperBlock Input and Block Output dialogs. For example, the rule for the
quantization block requires that the datatype of the Resolution parameter be the
same as the output. So if in the Output dialog, Integer was specified for the output,
then the parameter Resolution must also be an integer. This rule would also apply
to any parameter variables (%Variables) that are used for Resolution.

To check for consistency of the three traditional datatypes among the four classes of
data, you must set the simulator typecheck keyword option in simulation or Auto-
Code. Before the RTF is generated, type checking is performed for the entire model.
Any inconsistencies detected in the model will produce error messages pointing to
the block or blocks that contain the conflicting datatypes.

NOTE: Full datatype checking is also performed if the fixpt (fixed-point
arithmetic) keyword is set.

All datatype conflicts must be resolved before you can generate code. To aid you in
correctly matching the various datatypes, the connection editor shows datatypes for
all inputs and outputs. There is also a complete list of the floating, integer, and bool-
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ean datatype rules for inputs, outputs and states for each primitive block in
Table 4-3 on page 4-25, and a list of blocks for which fixed-point arithmetic is sup-
ported in Table 15-1 on page 15-23, along with datatype rules for these blocks. For
parameter rules for each block you may refer to the online help.

The TypeConversion block is provided to help with some of your datatype mis-
matches. It accepts a vector of a given type and converts it to an identically-dimen-
sioned vector of the type you specify. So if you want a block input to be integer, but
the block feeding into it allows only floating point outputs, you can insert a Type-
Conversion block that converts floating inputs to integer outputs. For a full explana-
tion see the online help for the TypeConversion block.

For operations that accept fixed-point inputs and perform logic or arithmetic on
them, you may not need to use TypeConversion blocks, because if you specify a
fixed-point datatype on an external input, the data on that input will be presented
in the specified datatype.

4.5.2 Datatype and Typecheck Example

This example shows how the typecheck  keyword affects simulation results.

1. Go to the Xmath command window and type:

copyfile "$SYSBLD/examples/integer_sim/intsim.cat"

The catalog has been copied to your current working directory.

2. Load the catalog.

3. In the Xmath command area, type:

[,y]=sim("IntSim1", [0:3]’,{typecheck,!simclock})?

The sim results show that the integer and float datatypes have been preserved.

4. Reissue the sim  command without typechecking:

[,y]=sim("IntSim1", [0:3]’,{!typecheck,!simclock})?

Integer simulation does not take place; only floats are returned.
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4.5.3 Traditional Datatyping Example

This example demonstrates how to resolve an input/output datatype mismatch.

Consider the model, DataTypeGain , shown in Figure 4-6 on page 4-24.

Check the model for errors using the analyze  function:

analyze("DataTypeGain", {typecheck})

The keyword {typecheck} instructs analyze to include datatype consistency
checking as part of the analysis. As a result of the datatype check, the following er-
ror is generated:

Input Type Mismatch: {DataTypeGain.GainFloat.3}
Input 1 is connected to INTEGER.
Rule: Input Type Must Match Output Type.
Expecting FLOAT.
Problems Loading model from catalog. Exiting.

Let’s examine the model. The only difference between the gain blocks is that the out-
put type is set to Integer for GainInt, and it is set to Float for GainFloat. Both gain
blocks accept the same input signal from the parent SuperBlock DataTypeGain; the
type is Integer.

As indicated in the error message, and also Table 4-3 on page 4-27, for Gain blocks,
the input datatype must be the same as the output datatype. The block GainFloat
breaks this rule because its output datatype is float, which does not match the in-
put datatype (inherited from the external input) which is Integer.

To correct the problem, go to the GainFloat Output tab and change the Output
DataType to Integer. Run the analyze command again, and the analysis completes
with no errors.

FIGURE 4-6 Datatype Mismatch Model
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4.5.4 Datatyping Rules

The Table 4-3 on page 4-25 lists the blocks and their datatype rules. Blocks which
share common rules are grouped together. If not otherwise stated, all input and out-
put channels must be the same datatype. Comments for each group of blocks con-
tain specific exceptions to the general rules; when a superscript appears you can
find the corresponding comment on page 4-28.

TABLE 4-3 Legal Data Types for Each Block (Except Fixed-point Datatypes)

Block Type Legal Inputs
Legal

Outputs
Legal
States

Summer,
ElementProduct,
DotProduct,
CrossProduct,
ElementDivision,
AbsoluteValue

Same as output Integer or
Float

NA

TypeConversion Any Any NA

TimeDelay Same as output Integer OK if
discrete or
procedure

Same as
outputs

ShiftRegister
LogicalOperator

Any input > 0 is True, else
False

True = 1,
False = 0.

Same as
outputs

RelationalOperator Integer or float True = 1,
False = 0.

NA

DataPathSwitch First channel, any input > 0
is True,
else False; Other channels,
same as output

Any NA

Stop Any input > 0 is True; else
False

NA NA

STD Any1 True = 1,
False = 0.

NA
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SpringMassDamper
StateSpace
NumDen
Pole Zero
ComplexPoleZero
Integrator
Hysteresis
LimitedIntegrator
PIDController
UserCode

Fuzzy Logic

Must be float Must be
float

Must be
float

SquareRoot
Logarithm
Exponential
SignedSquare Root
Sin
Cosin
Atant2
SinAtan2
Cosin
Asin
CosAsin)
Acos
Cartesian2Polar
Polar2Cartesian
Cartesian2Spherical
Spherical2Cartesian
AxisInverse
AxisRotation
CubicSplineInterp
BiLinearInterp
BiCubicInterp
MultiLinearInterp.

Must be float Must be float NA

Quantization Same as output Integer or float NA

AlgebraicExpression Integer or float3 Integer or float NA

TABLE 4-3 Legal Data Types for Each Block (Except Fixed-point Datatypes)  (Continued)

Block Type Legal Inputs
Legal

Outputs
Legal
States
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Waveform
PulseTrain
SquareWave
Step

NA Integer or
float2

NA

SinWave
UniformRandomGenerator
NormalRandomGenerator

NA Must be float NA

LogicalExpression Integer or float1 True = 1,
False = 0.

NA

UPowerConstant
ConstantPowerU

Same as output Must be float NA

BlockScript Defined in the BlockScript

GainScheduler First channel can be
Integer or Float. Other
channels same as output.

Integer or float NA

Polynomial
Gain
Encoder
Decoder
ConstantInterp
LinearInterp
Breakpoints
Deadband
Saturation
LimitedIntegrator
BiLinear Interp Table
Preload

Same as output Integer or float NA

WriteVariable Must be float3 NA NA

ReadVariable NA Must be float3 NA

Constant N/A Integer, Float,
or Logical

N/A

TABLE 4-3 Legal Data Types for Each Block (Except Fixed-point Datatypes)  (Continued)

Block Type Legal Inputs
Legal

Outputs
Legal
States
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1. Each input and output channel can be a different datatype, but channel usage
must be consistent across all transitions. For example, a logical input channel
cannot also be used in a numeric expression, and a numeric input channel can-
not also be used in a logical expression.

2. The parameters related to the TIME variable are always floating point, while
variables related to the OUTPUT variable match the output data type in the gen-
erated code.

3. Variable Rules: The variables written to may be Float or Integer. If Bit address-
ing is used, the variable must be Integer.

4.6 Connecting Blocks

Connections are data and control flows that direct input signals through a model.
They appear as orthogonal lines on the screen. Within a block diagram, each (inter-
nal) connection routes the (output) signal from a block so that it is the input signal
to a specific pin in the next block in the sequence. Signal connections go from left
(inputs) to right (outputs).

By default, the connections are displayed in scalar mode, meaning each pin is
drawn separately. The number of pins and any related labels are displayed in the
editor.

ScalarGain,
MatrixTranspose,
MatrixMultiply,
RightMultiply, LeftMultiply

Same as output Integer or
Float

N/A

MatrixInverse,
MatLeftDivide,
MatRightDivide

 Float only Float only N/A

TABLE 4-3 Legal Data Types for Each Block (Except Fixed-point Datatypes)  (Continued)

Block Type Legal Inputs
Legal

Outputs
Legal
States
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In Figure 4-7, the labels make it easy to follow the signals inherited from the Super-
Block ed2.

4.6.1 Connection Rules

With very few exceptions, the following rules govern SystemBuild block connections:

■ In general, a single input accepts a single output from one other block.

■ An output can be connected to the inputs of one or more other blocks.

■ An output must not be directly connected as an input into the same block. If the
signal first passes through other blocks, the connection is allowed. See
Figure 3-2 on page 3-3.

■ Inputs and outputs are not required to be connected during an editing session.
When the block diagram is analyzed for simulation, or when code is generated,
any unconnected input pins will produce a warning; unconnected inputs are
assigned to 0.

■ Individual blocks may generate external outputs.

■ Top-level SuperBlocks are required to have at least one output. Unconnected
outputs from a top-level SuperBlock are set to zero. SuperBlock references, in-
cluding Procedures, may have zero outputs.

■ It is acceptable to connect an element of a vector output to a scalar input, or a
scalar output to an element of a vector input.

FIGURE 4-7 Scalar Connections
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4.6.2 Creating Connections

You can connect blocks using selections from the SuperBlock Editor’s Connect
menu or using mouse shortcuts.

Creating a Simple Connection

A simple connection connects the first available From block output signal to the first
available To block input pin; it then connects the next available output signal to the
next available pin until all pins are connected.

To perform a simple connection, middle-click (3-button mouse) or Control-right-
click (2-button mouse) as shown in Table 4-4 on page 4-30.

Using the Connect Menu

The Connect menu is fully described in the online help for the editor window; in the
editor tool bar, press the ? icon to raise the editor help. The connection process is
selection-enabled, that is, at least one block must be selected to enable Connect
menu items. The following actions will raise the connection editor to perform the
connection.

TABLE 4-4 Simple Connections

Connection From ➀ To ➁ Click

block to block source destination

external inputs to
block

open space to left
of destination

destination

block to external
outputs

source open space to
right of source

Inputs Connect an external input to the selected block. This menu item is only
enabled when one block is selected.

Mouse: Middle-click (3-button mouse) or Control-right-click (2-button
mouse) in an open area, then in the target block.

Select one block, then click the external input icon.

➀ ➁

➀ ➁

➀ ➁
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Using the Connection Editor

There are four buttons at the bottom of the connection editor: Cancel , Add , Del and
Done. Just above the connection buttons there is a From, To field. If external inputs or
outputs are involved, the dimension of the External Input/Output vector will be dis-
played at the top of the form. This field is editable.

Creating Connections

■ Only one connection editor is allowed at any given times, regardless of the num-
ber of editors open.

■ The connection editor interface is unique in SystemBuild in that the action (Add
or Del) must be selected before the operand (the input signals) are chosen.

Blocks Create a connection between two selected blocks. This menu item is en-
abled only when two blocks are selected.

Mouse: Middle-click (3-button mouse) or Control-right-click (2-button
mouse) in From object, then in To object.

Select two blocks then click the internal connection icon.

Outputs Connect the selected block to an external output. This menu item is
only available when one block is selected.

Mouse: Middle-click (3-button mouse) or Control-right-click (2-button
mouse) on object, then in an open area.

Select a single block then click the external output connection
icon.

Manual
Routing

Enable manual routing of connections. Select a connection using the
middle mouse button (3-button mouse) or control-right-click (2-button
mouse) and change the routing by dragging the marker to a new loca-
tion.

Mouse: Middle-click (3-button mouse) or Control-right-click (2-button
mouse) in open area, holding down button until transition
markers appear.

Automatic
Routing

Automatically route connections to selected block(s). The SystemBuild
Editor will lay out the connections using an algorithm that picks a route
that avoids crossing blocks and other connections if possible. If manual
routing was previously performed on the selected block(s), selecting this
option negates that effort.
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■ To add the maximum number of one-to-one connections in one operation, dou-
ble-click on Add and the connection editor will make the simplest set of connec-
tions that it can without deleting existing connections. For example, if pins 1
and 2 are available on both sides of the menu, they are connected.

■ To make a single connection (with the Add button enabled) select a pin number
from the source block, then select a pin number in the destination block. Al-
though it is natural to go from left to right it is not necessary; you can select a
pin from either block as long as the next selection is from the opposite block.

■ You can also create connections using the From, To field . This field assumes the
input is from left to right (source to destination). You specify a single connection
as a pair of integers separated by a comma. For example, 2,7 will connect the
2nd output of the source block to the 7th input of the destination block. To
specify multiple connections, specify two vectors separated by a semicolon,
where the first vector represents a range of pins on the source block, and the
second represents pins on the destination block. For example, 1:5;11:15 .

■ To make multiple connections, drag-select (lasso) multiple consecutive pins
from the source block then lasso an equal number of consecutive pins on the
destination block.

Deleting Connections

■ Click once on the Del button to enable deletion. Click any pin on the source (left-
side) or destination (right-side), and its connections will be erased.

■ Double-click on Del to undo all the changes in the last connection editor session.

Altering the Number of External Inputs or Outputs

■ To alter the number of External inputs or outputs from within the connection
editor, change the number in the display at the top editor and press Return .

■ If you add to the number of External Inputs, the additional inputs will be added
to the end.

■ If you are adding to the number of Outputs, you can add them to the end by
typing the new number of outputs and pressing Return . You can insert outputs
into the existing output list as follows:

a. Type the new number of outputs (but do not press Return ).

b. Click between any two output destination pins; the additional pins will be
inserted at that location, and any previous information will be displaced
(but not lost).
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Displaying Connections

The way signals are displayed in the Connection Editor is influenced by the block la-
bels or names, and the Input Pins/Output Pins settings for each blocks. By default,
vectored labels will be compressed. When you have a large number of pins shown in
scalar mode, a scroll box will appear above the Cancel button. By default, Channel 1
is always at the top. You can use the down arrow to move the view channels further
down the list, and return towards the top with the up arrow. The scroll bar allows
you to do the same on a larger scale; drag the box left to go to the top of the list, or
drag right to display the bottom of the list. Note, when you move connections out of
alignment they will be visually truncated; the connection is not affected, however.

Exiting the Connection Editor

■ Single-click on the Cancel button to exit the Connection Editor and discard all
the changes in the last session. Double-click on Cancel to remove all changes but
leave the Connection Editor on the screen.

■ Click Done button to accept the changes that were made in this session, transfer
them to the picture on the screen, and return to the SystemBuild editor.

4.6.3 Automatic and Manual Connection Routing

By default SystemBuild uses automatic connection routing. An algorithm is used to
determine a path that takes the fewest turns, does not overwrite blocks or other
connections, etcetera. The results are good for most diagrams but you may need to
use manual routing to adjust the routing for complex diagrams.

When Manual Routing is enabled, square “handles” will appear on the connection
lines. Use the middle-mouse button to drag a handle to a new location.

There are two ways to enable Manual Routing:

■ Select Connect→Manual Routing.

■ Middle-click on a hidden handle on a connection. Clicking in the middle of a
horizontal connection is often successful.

While changing the routing you may have difficulty “lining up” connections. In lim-
ited circumstances, it may be helpful to go to the Options menu and disable Snap.
Remember to enable snap after you have made your adjustments.

Manual routing does not fix all aesthetic problems; complex diagrams may also re-
quire a combination of relocating and resizing blocks and adjusting label display.
These and other issues are discussed in Section 4.7.



Editing Blocks SystemBuild User’s Guide

4-34

4.7 Modifying Block Diagram Appearance

In addition to block level settings, the Editor provides many ways to improve the de-
fault appearance of your diagrams.

■ SystemBuild Editor shortcuts are the most expedient way to change your dia-
gram. For a summary of all shortcuts, go to the Xmath command area and type
help shortcuts .

■ When you are editing a large model, you can always use the scroll bars to move
the view. However, the View menu includes other helpful options. Fit com-
presses the model so that all blocks appear within the editor viewing region;
Zoom changes the image size without changing the dimensions of block diagram
elements; Normal restores the default Zoom (%100). These options are also
available on the Edit ToolBar, which appears below the menu bar. For a full de-
scription of each tool, select Help→Topics.

Panning is a useful option for viewing large models that extend beyond the
screen. Hold down the Right mouse button in empty space; and drag the cursor
in the direction that will allow you to see the hidden portions of the model.

■ The Display Tool Bar, which appears just above the work area offers easy access
to block attribute settings. See the online help for a description of each icon.

■ Certain Algebraic blocks have display icons that can appear with their input
connections in any of several locations. These include summers, multiplica-
tions, dividers, etc. To toggle the icon display, select the block and press s re-
peatedly, or, change the type using the Icon Type combo box on the tool bar.

Figure 4-8 on page 4-35 shows an example of an organized, but cluttered, diagram.

1. All elements are shown at normal size. To make the labels more readable, in-
crease the font size to 16 points. You can do this via the combo box on the Edit
tool bar, or you can place the cursor in the window and type > until the font is
the desired size (type < to reduce the font size).

2. At this point, block 3 is too narrow to display the Algebraic Equations. To widen
the block, place the cursor over the block and type w repeatedly. Alternatively,
click on the corner that shows the block ID and pull to drag the block wider.
Move the blocks so that the labels no longer overlap.

Turn on the manual routing markers, and use the middle mouse button to drag
the connections so that they no longer overlap the labels, as indicated by the ar-
rows in ➁.
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FIGURE 4-8 Modifying a Block Diagram

➀

➁

➂
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3. Finally, make some of the blocks taller by dragging upward on the corner by the
ID number, or placing the cursor over the block and typing T. The diagram
should now resemble ➂.

4.8 Example

This example showcases the connection editor, and how block labels and settings
affect the appearance of the block diagram. In the first four steps you will create the
simple SuperBlock Forty, shown in Figure 4-9 on page 4-36.

1. Create a SuperBlock named Forty. Give it 40 inputs and 40 outputs. Set the In-
put Naming Field to Enter Local Label Names. Go to the Inputs tab and specify
labels as follows: In cell 1, type f1(1:10) . Type f2(1:10) in cell 11, f3(1:10)
in cell 21, and f4(1:10)  in cell 31.

2. Create a gain block named Twenty and specify 20 inputs and 20 outputs. On
the inputs tab, type t1(1:10) in cell 1, and t2(1:10) in cell 11. Go to the
Outputs tab, and specify the same labels. On the display tab, enable Show La-
bels, and set the Input Pins field to Vector. When the finished block is displayed,
note that only two inputs pins are shown. This reflects the fact that two vectors

FIGURE 4-9 SuperBlock Forty Before Connections
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of unique labels are used. There are 20 pins on the output, as is normal for sca-
lar mode.

3. Create a Sin block with 10 inputs and 10 outputs. Duplicate the block (place
the cursor over it and type d).

4. Edit the first sin block. Name it S. On the inputs tab, specify s1(30:34) in
cell 1, and specify s2(35:39) in cell 6. On the display tab enable Show labels,
and set the Input Pins type to Vector and the OutPut pins type to Bundle. Note
that the pins are depicted as scalar because the inputs are not connected yet
(see Figure 4-9). The outputs are displayed as a single thick pin; the number 10
indicates the number of pins in the bundle.

5. To connect external inputs to twenty, middle-click in white space to the left of
the block, then middle-click on the block. The Connection Editor will appear.

a. The initial view, ➀, in Figure 4-10 on page 4-38, demonstrates that vectored
labels are grouped together by default. To expand a vector (to scalar view),
click on a filled triangle. To compress a vector, click on a hollow triangle as-
sociated with any label in the vector.

b. Double-click on the Add button to create a simple connection from the exter-
nal inputs to Twenty (see ➁). To expand the f1 source vector, click on the
filled triangle beside f1[10]); do the same for the t1 destination. Note, a
scroll bar appears above the Cancel  button.

c. With the vector expanded we can create single connections or multiple con-
nections. You can create view ➂ as follows. With the Add button selected,
lasso (drag a selection box) the first 5 pins from f1 (➃), then select the last
five pins of t1 (➄). Connect f1(6:10) to t1(1:15) in the same manner.

Click Done.

6. Next we will connect external inputs to S. Middle-click in empty space to the left
of S, then middle click on S. In the From, To Field , type 25:32; 1:8 . Click Done.

7. Select Twenty and S, then raise the connection editor. Double-click on Add . Note
that first two available pins on each block are connected. Click Done.

8. Create a connection from external inputs 35:39 to the first 5 inputs of block 4.
The diagram should now resemble Figure 4-11.
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FIGURE 4-10 Connecting External Inputs to Forty
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9. Create external outputs as follows:

a. Create a simple connection between Twenty and the external outputs. To
simply the appearance, select Twenty and select Vector from the OutPut
Display Mode pulldown on the SuperBlock Editor tool bar.

b. Create a Connection from S to the External Outputs. Connect channels 9
and 10 to External Outputs 1 and 2. Connect 1:4 to 4:7 and 5:8 to 15:18.

c. Connect block 4 to external outputs. When you raise the connection editor,
move the scroll bar all the way to the right. To view the final output pins.
Connect from 4(1:5) to (21:25), and 4(6:10) to 36:40.

10. Your connections are complete but the diagram is disorderly. To improve the
readability of the outputs, make the blocks taller (place the cursor over a block
and press T). Select Connect→Manual Routing to display the connection routing
marker handles. Use the middle mouse button to drag handles to new locations

FIGURE 4-11 Diagram Before Outputs
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that eliminate overlaps. Use Manual Routing to adjust the external outputs so
that they do not overlap the inputs, as shown in Figure 4-12,

Finally, change the Input Pin and Output types from Scalar to Vector to Bundle.

4.9 Special Blocks
Most of the blocks in the SystemBuild library perform a dedicated computational
function. A trivial example is the Gain block, which multiplies the inputs by some
fixed value and passes the result to the output channel. There are some additional
blocks in SystemBuild that do not do dedicated computations, but rather control
the execution behavior of other blocks and SuperBlocks in the model. These special
SystemBuild blocks can conditionally execute blocks or SuperBlocks in the model,
repetitively execute blocks or SuperBlocks, define the block execution order or ter-
minate execution altogether.

4.9.1 Conditional Execution (Condition, IfThenElse Blocks)

The Condition and IfThenElse Blocks provide frameworks for conditional execution.
The main difference between the two blocks is the type of blocks they control.

The Condition block controls the execution of Procedure SuperBlocks. Depending
on the inputs and the mode of the Condition block, one or more Procedure Super-

FIGURE 4-12 Diagram with Resized Blocks and Manual Routing with Vectorized
Output from Twenty



SystemBuild User’s Guide Editing Blocks

4-41

4

Blocks listed in the its Code tab will be executed. See the online help for the Condi-
tion block for more information.

Instead of controlling the execution of entire procedure SuperBlocks, IfThenElse
blocks control execution of specific blocks in a SystemBuild diagram. Each If-
ThenElse block has boundary area (a container) where blocks can be placed and
connected. A logical expression, defined in the block dialog, determines the block
execution order. If the logical expression evaluates true, the blocks in the IfThenElse
block container are executed. See the online help for the IfThenElse block and Con-
tainer Blocks.

The DataPathSwitch block might also be classified as a conditional execution block,
but this would be incorrect. With this block, all inputs are executed first, and only
one of the inputs is passed through to the block outputs.

4.9.2 Repetitive Execution (While, Break Blocks)

The While block has a similar structure to IfThenElse blocks. The blocks inside the
While block container are executed until the inputs to a Break block are true. Each
While block must contain a Break block.

4.9.3 Terminating Execution (Stop Block)

The Stop block will stop execution of a model if any of its inputs are true.

4.9.4 Execution Ordering (Sequencer Block)

The Sequencer is a simple block that has no inputs or outputs. On a SystemBuild
diagram, the sequencer is shown as a double vertical line that partitions a Super-
Block Diagram into two areas. The sequencer does not do any kind of computations.
Its sole purpose is to define the order that blocks are executed. This can be impor-
tant if Variable blocks or Procedure SuperBlocks are used in the model.

The effect of the sequencer on block execution is simple: all basic blocks to the left
of a sequencer bar are executed before all blocks to the right of the same sequencer
bar. The blocks in any child SuperBlock to the left of the sequencer bar will also be
executed before blocks on the right of the bar if the child SuperBlock is in the same
subsystem as the SuperBlock containing the sequencer. Please see the online help
for more information and examples.
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5 SuperBlocks and SuperBlock
Transformations

SystemBuild provides a variety of SuperBlock types to model both continuous and
discrete nonlinear dynamic systems. This chapter discusses SuperBlocks types and
their intended purpose and attributes.

5.1 Continuous SuperBlocks

Continuous SuperBlocks model nonlinear dynamic ordinary differential equations
(ODEs) of the form:

Where u is the input vector, x is the state vector, y is the output vector, and xinit is
the initial state provided by the user. You may choose among several ODE solvers to
best approximate the solution to the continuous models. Recommendations for use
of each integration algorithm are given in Section 7.10 on page 7-18.

5.2 Discrete SuperBlocks

Discrete SuperBlocks model systems that sample and hold their inputs at a speci-
fied sample rate. The system can be expressed as a difference equation where k is
the sample index:

x0 xi n i t=

ẋ f x u,( )=

y g x u,( )=

x0 xi n i t=

xk 1+ f x k uk,( )=

yk g xk uk,( )=
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Attributes required to define a discrete SuperBlock are:

Sample Period  — The sample rate of the discrete SuperBlock.

Sample Skew  — The offset between the simulation start time and the first execution of
the current SuperBlock.

Enable Signal  — Determines whether a SuperBlock will be free-running or enabled.
You may specify None (the default), Parent, or a pin number (an input signal).

Selecting None results in a free-running system. This means that the SuperBlock
is always enabled and will execute periodically at its Sample Period, beginning
at the specified first sample (skew) and continuing throughout the simulation.

Selecting Parent or specifying an input signal creates a system that will run peri-
odically, but only when it is enabled by its parent SuperBlock or the specified
input signal. A SuperBlock enabled by its parent will execute at its sample in-
terval as long as its parent is enabled. A SuperBlock enabled by an input signal
will execute at its sample interval as long as the enable signal is true.

Group ID — Allows you to assign a SuperBlock and its primitive blocks to a specific
processor group. This field is enabled whenever the SuperBlock type is Discrete.
By default, all systems of the same rate are grouped in the same subsystem, so
this setting allows you to override the arbitrary grouping. This parameter is use-
ful for both multiprocessing and for controlling the size of generated procedures
during the AutoCode code generation process.

5.3 Triggered SuperBlocks

Triggered SuperBlocks are discrete in nature, but do not execute periodically. They
are executed once each time the leading edge of the trigger signal is detected (when-
ever it transitions from ≤ 0 to > 0). Alternatively, a triggered SuperBlock can have
Asynchronous output posting. Asynchronous Triggered SuperBlocks are executed
once each time either the leading edge or the trailing edge of the trigger signal is de-
tected.

All discrete dynamic equations for blocks nested within a Triggered SuperBlock are
evaluated assuming a sample interval of 1.0 seconds. As a result, dynamic blocks
that incorporate the sample rate into their equations, such as the discrete integra-
tor, should be used with care, because Triggered SuperBlocks are not executed peri-
odically.



SystemBuild User’s Guide SuperBlocks and SuperBlock Transformations

5-3

5

Attributes required to define a triggered SuperBlock are:

Trigger Signal  — You may specify either Parent or a pin number to be used as the trig-
ger signal.

Output Posting  — This topic is explained in more detail in Section 5.7, Four choices
are available:

● After Timing Req.

● As Soon as Finished

● At Next Trigger

● Asynchronous

Timing Requirement  — When output posting is After Timing Requirement, the Timing
Requirement value is the elapsed period of time between the start of execution
for the triggered subsystem, and the time when the outputs of the triggered
subsystem will be available to other system elements. The lower the timing re-
quirement, the higher the priority of the subsystem.

5.4 Procedure SuperBlocks

Procedure SuperBlocks are special constructs designed to represent generated soft-
ware procedures that can be called as reusable functions in the code generated by
AutoCode.

Unlike types of SuperBlocks, one function will be generated for each Procedure Su-
perBlock, and multiple references to the same procedure will reuse the single func-
tion. Using Procedure SuperBlocks can reduce the generated code size if
SuperBlocks are multiply referenced.

There are two ways to use Procedure SuperBlocks in a model: a direct reference or a
reference through a Condition block. For the most part, Procedure SuperBlock be-
havior is consistent for both types of references, but some differences exist and
these are detailed in the Condition block discussion in the online help.

There are six classes of Procedure SuperBlocks: Standard, Macro, Startup, Back-
ground, Interrupt, and Inline. Of these, only Standard and Macro Procedure Super-
Blocks can be referenced from a Condition block. Standard and Macro Procedures
are general purpose elements that can be used within Discrete or Triggered Super-
Blocks, or any type of Procedure SuperBlock. The Startup, Background, and Inter-
rupt Procedures are special constructs that enable you to model Real-Time
asynchronous tasks in AutoCode-generated code.
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All Procedure SuperBlock references are treated as individual subsystems and are
executed completely as if the SuperBlock reference were an intrinsic block within
the parent. This treatment facilitates the mapping of these SuperBlocks to stand-
alone reusable functions. The exception to this is the Inline Procedure SuperBlock
(see Section 5.4.3).

Another characteristic of Procedure SuperBlocks is that they inherit timing at-
tributes, such as the sample interval, from the parent SuperBlock. If the same pro-
cedure is referenced in multiple SuperBlocks with different rates, each reference will
inherit each different rate.

Discrete, Triggered, or Enabled SuperBlocks with identical timing attributes are
typically combined into collective subsystems from which the blocks are sorted to
minimize algebraic loops. Since procedures must execute completely in one pass,
care must be taken to avoid algebraic loops.

Limitations

■ Procedure SuperBlocks cannot be used in any continuous SuperBlock or as the
top-level SuperBlock.

■ Procedure SuperBlocks are the only type of SuperBlock that may be nested
within another Procedure SuperBlock.

■ The ReadVariable and WriteVariable blocks (see the online help) are provided for
communicating information to and from procedures in a manner that is similar
to accessing global data from a function. However, the read and write sequence
may not occur in the order that you would assume.

■ The requirement to treat procedures as stand-alone functions prohibits using
DataStores in procedures.

5.4.1 Standard Procedures

The Standard Procedure SuperBlock is a generic utility that may be nested within
any Discrete, Triggered, or Procedure SuperBlock. A Standard Procedure will inherit
the attributes of the parent SuperBlock. These are the only Procedure SuperBlocks
supported within the Condition block.

5.4.2 Macro Procedure

The Macro Procedure behaves the same as a Standard Procedure during System-
Build simulations. However, AutoCode will substitute a user-supplied macro state-
ment in place of a call to a generated procedure. As a result, you can directly call a
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special I/O or utility function from the generated code and replace that equivalent
behavior with SystemBuild blocks during simulation.

The procedure SuperBlock catalog item must define the call to the macro; like all
other SuperBlocks, it must contain at least one block, even if only the procedure is
of interest.

■ The macro string is specified on the Code tab.

■ The first line contains the name of the macro, terminated with a semicolon.

■ All subsequent lines are arguments to the macro, one per line, each terminated
with a semicolon.

EXAMPLE 5-1: Macro Procedure SuperBlock

Type the following in the Code tab:

Read_A0;
Channel_1;

The above will result in the following generated C code:

Read_A0(Channel_1, in_signal, out_signal);

Input and output variables will be listed individually following the optional argu-
ments.

The actual macro code must be input by the user into either an include (*.h) file or
directly into the source code file.

For ADA, a simple procedure call is generated. It's up to the user to fill in the defini-
tion of the procedure.

The macro may also be redefined with pre-processor directives from within the Au-
toCode template file. See the AutoCode Reference manual for more information on
importing macro code into generated code.

5.4.3 Inline Procedure

In contrast to all other classes of Procedure SuperBlocks, the Inline Procedure is not
treated as an individual subsystem. The primitive blocks nested within an Inline
Procedure are merged into the subsystem of the parent SuperBlock. As a result, use
of Inline Procedures, as opposed to Standard procedures, will influence the block
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execution order and can help eliminate algebraic loops in many cases. This treat-
ment, however, comes at the expense of generated code size. AutoCode will not cre-
ate a reusable procedure for Inline Procedures.

This treatment, however, only applies to directly referenced Procedure SuperBlocks.
If an Inline Procedure is referenced through a Condition block, it will be treated like
a Standard Procedure and an individual subsystem will be created for that particu-
lar reference.

5.4.4 Background Procedure

The Background Procedure represents the computations that are to be performed
when the system is otherwise idle. Essentially, the Background procedure is the
lowest priority task and is executed only when no other tasks require execution.

A Background SuperBlock cannot have external inputs or outputs and is required
to interact with other system elements via ReadVariable and WriteVariable blocks.
Hierarchies of Standard and Macro Procedures can be constructed within the Back-
ground SuperBlock. Dynamic blocks with states cannot be included in a Back-
ground SuperBlock, although state-like behavior may be achieved with Variable
blocks. UserCode blocks (UCB) or BlockScript blocks in Background Procedure Su-
perBlocks, cannot have states.

The Background Procedure is primarily an AutoCode-specific concept and is not
supported in the SystemBuild simulator.

5.4.5 Startup Procedure

The Startup SuperBlock is a means by which initialization calculations may be per-
formed before the beginning of a simulation.

A Startup SuperBlock may not have external inputs or outputs and only interacts
with other system elements through the ReadVariable and WriteVariable blocks.
Variables initialized from a Startup Procedure may be used as %Variables in other
SuperBlocks, or may be accessed with ReadVariable blocks. Hierarchies of Standard
and Macro Procedures can be constructed within the Background SuperBlock. Dyn-
amic blocks with states cannot be included in a Startup Procedure SuperBlock, al-
though state-like behavior may be achieved using Variable blocks. UserCode blocks
(UCB) and BlockScript blocks in Startup Procedure SuperBlocks cannot have
states.
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5.4.6 Interrupt Procedure

NOTE: Asynchronous Triggered SuperBlocks are expected to replace Interrupt
Procedure SuperBlocks, since asynchronous triggers provide a more
flexible, “simulatable” solution without most of the restrictions of
Interrupt Procedure SuperBlocks. Although Interrupt Procedure
SuperBlocks are still supported for backward compatibility this feature
may be discontinued in the future.

The Interrupt Procedure represents the computations that are to be performed
within an asynchronous Interrupt Service Routine (ISR) in a real-time environment.
As a result, the Interrupt Procedure is primarily an AutoCode-specific concept and
is not supported in the SystemBuild simulator.

The Interrupt Name field can be used to associate Interrupt SuperBlocks with specific
interrupts in the AutoCode scheduler template. Note that the handling of ISRs is
platform and operating system specific and requires a knowledge of these software
concepts.

An Interrupt SuperBlock cannot have external inputs and outputs, and is required
to interact with other system elements through ReadVariable and WriteVariable
blocks. Hierarchies of Standard and Macro Procedures can be constructed within
the Interrupt SuperBlock. Dynamic blocks with states cannot be included in an In-
terrupt SuperBlock, although state-like behavior may be achieved using Variable
blocks. Hierarchies of standard and Macro Procedures may be constructed within
the Interrupt SuperBlock. UserCode blocks (UCBs) or BlockScript blocks in Startup
Procedure SuperBlocks cannot have states.
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5.4.7 Asynchronous Procedure Execution

Figure 5-1 on page 5-8 illustrates the sequence of initializations that occur in a Sys-
temBuild simulation. Note, only Startup Procedure SuperBlocks are supported dur-
ing simulation. Figure 5-2 on page 5-9 shows the AutoCode real-time execution
sequence, including Startup, Background, and Interrupt Procedure SuperBlocks.

FIGURE 5-1  Pre-Simulation Initialization Steps

Initialize Variables
from Xmath

Execute Startup
Procedures

Parameterize Model
vars = 1-2

Trim Outputs
initmode = 1-3

Simulation Time Loop

Term Update

Put Variables to Xmath;
vars = 2

End

Start
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Interrupt Service
Routine C

System
Hardware Initialization

Background
Procedure

Interrupt Service
Routine B

AutoCode
Scheduler

TriggeredPeriodic Enabled

Power On

Interrupt Requests

Asynchronous Interrupts

Timer Interrupt

(can go to any

1

100 Hz 50 Hz 10 Hz

Start-up Procedure

A
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C

FIGURE 5-2  AutoCode Real-time Application Execution Sequence
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5.4.8 Limitations of Asynchronous Procedures

The simulation support of Background and Interrupt Procedures cannot be accu-
rately represented during a non-real-time simulation. As a result, these Procedure
references are not executed during simulation.

Typically, the Background and Interrupt Procedures will be directly referenced from
within the part of your model that you will use to generate code using AutoCode, but
this reference will not be executed by the simulation.

5.5 File SuperBlocks

The File SuperBlock is a useful construct in environments where large system mod-
els are created by several engineers working independently, With File SuperBlocks
you can create a high-level model where part of the hierarchy is specified in an ex-
ternal file and is represented by a File SuperBlock icon.

To use the File SuperBlock construct, follow this procedure:

1. Identify parts of your system that can be logically grouped as stand-alone
datasets. The boundaries might be the physical components of your system, for
example, engine, transmission, drive train, or suspension.

2. Save the SuperBlocks associated with each dataset into separate files. Both bi-
nary and ASCII files may appear in libraries.

3. Use the SETSBDEFAULTcommand to define the SBLIBS variable to list the data
files that you have created:

setsbdefault,{sblibs="lib1.dat lib2.dat"}

4. In the SystemBuild editor, build the diagram using references to SuperBlocks:

a. In the catalog browser, double-click on the Libraries icon. You will see the
list of filenames in the SBLIBS variable. Note that the libraries are static,
and therefore the delete, cut, and copy options are not enabled for them.

b. Select a library that contains an object you want to load; the SuperBlocks
are listed in the Contents view.

c. To create a File SuperBlock reference, drag the desired SuperBlock icon
into the SuperBlock editor (drag with the middle mouse button on UNIX,
and the left mouse button on Windows).
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5. The simulator resolves the File SuperBlock references by sequentially searching
each library in the order specified in the sblibs variable. During the analysis
phase, messages appear indicating which library supplies each SuperBlock,
where applicable.

A SuperBlock in a library may reference SuperBlocks within itself or another li-
brary, but SystemBuild will not resolve SuperBlock references by searching
backward through the sblibs files: you are allowed to use the same Super-
Block name in more than one library. When there are multiple occurrences of a
name, any SuperBlock references to that name will go to the SuperBlock in the
library appearing earliest in the SBLIBS  string (step 3 on page 5-10).

NOTE: When running the simulation from the operating system, specify the
library file list using the environment variable SBLIBS :

5.6 Timing Considerations

Effects of Nesting on Enabled/Triggered SuperBlocks

Table 5-1 on page 5-12 lists the types of Enabled and Triggered SuperBlocks and
shows the relationship between parent and child SuperBlocks with regard to inher-
itance of trigger and enabling signals. For each combination of parent and child sta-
tus, the entries in the table show whether the child SuperBlock will be Free-
running, Enabled, Triggered, or Idle. Enabled and Triggered SuperBlocks can in-
herit activation signals from their parent SuperBlocks.

Using DataStores

The DataStore block provides an array of scalar memory elements or registers in
memory, which may be used in discrete SuperBlocks only. These registers are main-
tained as part of the simulation (and the AutoCode Real-Time scheduler), and do
not exist as separate blocks. Especially in the AutoCode context, this property calls
for special simulation timing considerations as explained in Section 5.7. For a dis-
cussion of AutoCode considerations for DataStores, see Section 5.9. Note that in
most cases, using ReadVariable/WriteVariable blocks provides a simpler, though
less deterministic, way to pass data between subsystems.

UNIX: setenv SBLIBS "lib1.dat lib2.dat"

Windows: set SBLIBS="lib1.dat lib2.dat"
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5.7 Simulation Timing Properties

This section discusses simulation timing properties, including subsystems and
DataStores.

Figure 5-3 on page 5-13 illustrates the timing by which discrete subsystems are up-
dated. In simulation, DataStores are written by a subsystem at the same time the
subsystem updates its outputs. In keeping with the SystemBuild requirement that
the outputs of every subsystem should be asserted every cycle, the scheduler per-
forms DataStore writing as part of refreshing zero-order holds for all outputs.

The situation differs according to whether the cdelay simulation keyword is speci-
fied to be true (or actiming , which sets cdelay True). If cdelay is specified, in or-
der to approximate the situation of running AutoCode generated code, a nominal
computational delay time is added to the execution time of a subsystem, and the
subsystem posts its outputs only at the time it is next scheduled for execution. By
contrast, when cdelay is set false, no delay is added, the computation time is as-
sumed to be instantaneous, and the outputs are posted (and DataStores written),
immediately.

The timing of trigger subsystems is shown in Figure 5-4 on page 5-14. The four
types are defined in terms of their output posting requirements.

TABLE 5-1  Relationship between Parent and Child Discrete SuperBlocks

Parent →
DP DN DE TP TN TT C Top

Child ↓ SuperBlock Type Enable Selection

DP Discrete Parent P F E F F E F F

DN Discrete None F F F F F F F F

DE Discrete Pin number E E E E E E F E

TP Trigger Parent N N N N N T N N

TN Trigger None N N N N N N N N

TT Trigger Pin number T T T T T T T T

Key: F = Free-running

E = Enabled

N = Never executed

T = Triggered

C = Continuous

P= E if first non-DP parent is E, else F



SystemBuild User’s Guide SuperBlocks and SuperBlock Transformations

5-13

5

5.7.1 At Next Trigger (ANT)

This trigger subsystem has a variable output timing, in that the outputs of a given
cycle are only posted when the next trigger is given for the subsystem. The timings
for the three types of trigger subsystem are shown in Figure 5-4.

5.7.2 At Timing Requirement (ATR)

In this case, a user-specified amount of time will elapse from the beginning of exe-
cution to the time that the output is posted. This type of subsystem is used when
determinacy is an issue, and more important than sheer performance.

5.7.3 As Soon As Finished (SAF)

The outputs are posted at the beginning of the next minor cycle after the subsystem
finishes its computations. This type of subsystem is preferred when performance is
more important than determinacy.

with cdelay=1

Key: Inputs sampled and subsystem started

Computation time, which may be greater or less than minor
cycle for cdelay = 1, is assumed to be 0 for cdelay = 0

Outputs posted and DataStores written.

FIGURE 5-3 Simulation, Discrete Subsystem Output Timings

with cdelay=0

Scheduler Minor Cycle
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5.7.4 Asynchronous (ASYNC)

This type of triggered subsystem differs from other triggered subsystem types, both
in the way it handles simulation, and the way it is handled in AutoCode. Asynchro-
nous SuperBlocks are designed to replace the Interrupt Procedure SuperBlocks. Not
only can they maintain the asynchronous aspect of the Interrupt Procedure Super-
Block, they can support model inputs and outputs, dynamic blocks, states (includ-
ing states in UCBs) etcetera.

At Next Trigger (ANT)

Key: Trigger received, inputs sampled and subsystem started

Computation time (shown where relevant

FIGURE 5-4 Triggered Subsystem Output Timings

At Timing Requirement (ATR), TR=2

As Soon As Finished (SAF) or
Asynchronous (ASYNC),
if triggered by a normal signal

Scheduler Minor Cycle

Outputs generated in response to the indicated subsystem
trigger are posted.

Asynchronous (ASYNC)

If triggered by a state event
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For simulation the Asynchronous subsystem is both leading and trailing edge trig-
gered (i.e., this subsystem will be scheduled if the triggering signal transitions from
<= 0 to >0, if it transitions from >0 to <=0. Also, the execution and posting require-
ments for Asynchronous subsystems differ depending on the type of signal used for
triggering.

■ If the triggering signal is the output of a normal primitive block or external in-
put, the subsystem will be treated the same as a SAF triggered subsystem, ex-
cept its priority is higher and the triggering is double-edge.

■ If the triggering signal is a state event (Section 11.9) then the subsystem will ex-
ecute outside of the scheduler at the exact instance when the event occurs. If
the triggering signal is attached to a ZeroCrossing block, and a variable step in-
tegrator is used, this allows the asynchronous trigger subsystem to function as
an interrupt service routine in the simulator, where the simulated interrupts
(from the ZeroCrossing block) occur asynchronously to the periodic portions of
the model.

For AutoCode purposes, the Asynchronous subsystem is suited to serve as an inter-
rupt service routine. In the AutoCode environment, the code generated to execute
this type of SuperBlock will differ based upon the source of the triggering signal (as
opposed to its type, since state events are not supported in AutoCode).

■ If the trigger source is internal to the model (that is, it is an output from another
primitive block or a SuperBlock from this or another subsystem, then the
ASYNC code will be scheduled the same as a SAF triggered subsystem, except
its priority will be higher and the triggering is double-edge.

■ If the trigger source is an external input that has not been acted upon by a
primitive block (even if that input has been brought through several layers of hi-
erarchy) the AutoCode scheduler will not schedule this subsystem. AutoCode
will generate a wrapper for the asynchronous subsystem that is intended to be
used as an interrupt procedure in your system.

Using an Asynchronous Triggered SuperBlock

Assume a simple continuous plant with transfer function defined as:

Assume we need a discrete controller that can have a sample period no larger than
Ts = 0.4[s] The controller will be simple, and the overall system dynamics can be
considered open loop. The controller task is to provide a step input to the plant at a
precise moment (not necessarily a multiple of the sampling interval Ts).

G s( ) 4
s 4+
--------------=
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A sensor output is available and it will detect the starting time at which we need to
apply the step input. The starting time will be the first zero crossing of a sinusoidal
signal sgn = sin(2*pi*f + phase)  where f = .5 [Hz] and phase = pi/2 .

While modeling the system we should have a practical implementation in mind,
such as a target real time controller executing the generated code from the graphi-
cally designed controller. Copy the catalog file to your local system as follows:

copyfile "$SYSBLD/examples/manual/async_trig_ex1.cat"

Load the file.

As shown in Figure 5-5, in order to demonstrate the difference between a SAF trig-
gered system and an asynchronous triggered system, both triggered systems are
built into the controller so that simulation outputs can be compared.

FIGURE 5-5 Asynchronous Trigger Example
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The catalog hierarchy is as follows:

Period_Discr_Ctrl contains the gain block “dummy_gain”; its purpose is to force exe-
cution of SAF_Trig_Sys every 0.4[s] (the sampling period Ts). After code generation
for Period_Discr_Ctrl the scheduler frequency will be set to 1/Ts = 2.5 Hz, which
would otherwise become the rate of our real time controller. We need to add the
dummy gain in our model in order to match sim , (which possibly has a faster
scheduler due to the continuous top-level SuperBlock), with AutoCode (Ts = 0.4[s]).
Of course Ts = 0.4[s] was one of the requirements for the design.

Note that the Asynchronous Triggered SuperBlock (ATSB) is contained as part of the
discrete controller. The location of this SuperBlock is immaterial for simulation pur-
poses, as long as the triggering signal is the output of the ZeroCrossing block. When
code is later generated for the discrete controller, the triggering signal for the ATSB
will be an external input, which will cause AutoCode to generate a routine suitable
for hooking into an interrupt source as the triggering device for the ATSB Sub-
system. By using this mechanism, it is possible to use the Asynchronous Triggered
SuperBlock to both simulate and generate code for interrupt handlers. For the sim-
ulation we use the output of Async_Trig_Sys as the stimulus to the plant; the out-
put of SAF_Trig_Sys is plotted for comparison.

1. Go to the Xmath command area and specify the time vector and the initial value
of the %Variable phase :

t = [0:.05:1.5]';
phase=90;

2. Simulate the model:

[te, y] = sim("async_trig_ex1", t,{extend, vars});

3. Plot the results:

plot(te, y, {strip, marker, x_lab = "time [s]",...
y_lab = ["Monitored param", "Async Trig system",...
"SAF Trig system", "Plant out"] })?

0  async_trig_ex1 Top-level SB

1 Period_Discr_Ctrl Discrete controller

2 Async_Trig_Sys Asynchronous triggered system

3 SAF_Trig_Sys Triggered system

0  Plant_and_Sensor Continuous plant & sensor
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Figure 5-6 shows the following signals:

We can see the unwanted delay of the step signal coming from the SAF triggered
system compared to the step signal coming from the asynchronous triggered sys-

Monitored param: a hypothetical monitored signal

Async Trig system: output from the asynchronous triggered system

SAF Trig system: output from the SAF triggered system

Plant out: output from the plant

FIGURE 5-6 Asynchronous Triggered Timing vs. SAF



SystemBuild User’s Guide SuperBlocks and SuperBlock Transformations

5-19

5

tem. This is the main benefit in using an asynchronous triggered SuperBlock for ap-
plications similar to our example. Try the simulation with different values of the
%Variable phase and observe the change in the “unwanted delay” coming from the
SAF triggered system.

AutoCode and the Asynchronous Triggered System

What does Autocode do in order to match the simulation results we just obtained?

While generating code for the discrete controller “Period_Discr_Ctrl”, the call to the
“Async_Trig_Sys” subsystem will not be included in the SCHEDULERfunction, but
will be left as an IRQ (interrupt request) call for the real-time controller. This way,
the subsystem Async_Trig_Sys will be almost immediately executed from the trig-
gering event (in our case the zero crossing of the sine wave) instead of waiting for the
next sample, as SAF_Trig_Sys does. If you are licensed for the AutoCode option,
generate code and examine the results to confirm this.

This example is very generic and simple; it does not show any relation between the
periodic controller and the plant, nor between the asynchronous triggered controller
and the periodic controller. Because such relations will be present in many applica-
tion it is important to recall that the asynchronous triggered system will be immedi-
ately available after service of the IRQ.

5.8 Subsystem Priorities

■ Higher priorities go to faster subsystems. Faster is defined as higher sampling
rate (discrete free-running) or quicker timing requirement (trigger).

■ If two discrete free-running subsystems have the same rate and the same skew,
the one with lowest subsystem ID has priority.

■ If a discrete free-running and a trigger subsystem have the same rate, the free-
running subsystem has priority.

■ If trigger subsystems have priority, the order of priority is ASYNC, SAF, ATR,
ANT.

■ Subsystem priorities are used to determine the order in which subsystems that
are executed at the same time point are executed, as well as determining which
values get written to DataStores if multiple subsystems attempt to write to one
DataStore at the same time.

Whenever a system with one or more discrete subsystems is analyzed for simulation
or any other purpose, a scheduler frequency (“minor cycle”) is calculated, based on
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the Greatest Common Divisor (GCD) of the discrete subsystem rates in the system,
including any trigger subsystem timing requirements. This may impact the operations
of an SAF trigger subsystem with a user-specified timing requirement that is cre-
ated into a subsystem that is otherwise purely continuous. In this case, the sched-
uler minor cycle will be equal to the timing requirement, which may mean that the
posting of the outputs of the SAF subsystem are unexpectedly delayed.

5.9 AutoCode Timing Properties

DataStores timing features that are peculiar to AutoCode are illustrated in Figures
5-7 through 5-9. In this example, two different subsystems are writing to the same
DataStore location, and the differences between the timings of the subsystems cre-
ates situations of interest. These examples illustrate that the situation regarding
DataStore timing is always determinate, and why it is prudent to avoid situations
where two subsystems write into the same DataStore location unless you can en-
sure there will be no conflict (for example, by making it impossible to trigger or en-
able them at the same time).

Preempted: ready to run but waiting for higher
priority activities to finish

Slow subsystem writes to the DataStore

Fast subsystem reads the DataStore

Slow subsystem reads from its own DataStore
after a one-cycle delay

FIGURE 5-7 DataStore Timings
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X

Y

Z

Y Y Y Y

ZZZ

Subsystem 1

Subsystem 2

DataStore

Subsystem 3

Key:

X XX
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In Figure 5-7 on page 5-20, Subsystem 1 runs faster than Subsystem 3, and thus
has higher priority, allowing it to run before Subsystem 3 each time they are both
primed for execution together. In other words, in an AutoCode environment, the
faster subsystem regularly preempts the activities of the slower subsystem.

Whenever Subsystem 3 runs to completion, it posts its outputs in a DataStore for
transmission to other subsystems and to itself. This is indicated by X in the dia-
gram. Although the output of Subsystem 3 might become available before the next
execution of Subsystem 1 (as at A), this cannot be guaranteed (as at B, when the oc-
casionally-triggered Subsystem 2 also preempts Subsystem 3). Therefore, to guar-
antee determinacy, the data from the DataStore will not be made available to
Subsystem 1 or other subsystems until the next time that Subsystem 3 is primed
for execution. This is the same as would happen with any subsystem if the outputs
of Subsystem 3 did not go through a DataStore.

The DataStore functions as a one-cycle delay for the Subsystem 3 outputs that go
return to Subsystem 3. This is because the outputs become available the next time
that Subsystem 3 is primed for execution, as shown at location Z in Figure 5-7. This
contrasts with the fact that, without the DataStore, the outputs of Subsystem 3
would be available within the subsystem on the same cycle as they were generated.

Figure 5-8 on page 5-22 illustrates how two different subsystems write to the same
DataStore. In this illustration, Subsystem 1 executes each third scheduler minor
cycle, and Subsystem 2 executes each fifth minor cycle. There is no skew time dif-
ference between them, but they both write to the same DataStore register element.
When they are initiated for execution, Subsystem 1 takes priority, executes first,
and has its data posted into the DataStore on its next wakeup time (point A). Soon
Subsystem 2 gets its opportunity to execute, and its data is posted at its next
wakeup time (point B).

In the meantime, Subsystem 1 has executed again, and its data becomes visible at
point C1. Before Subsystem 2 can have its data posted again (at point D), the data
from Subsystem 1’s third execution is posted in the DataStore location (point C2).
At point D, the output of Subsystem 2 becomes visible, to be overwritten again by
the output of Subsystem 1 at point E. Finally (point F), both subsystems post their
outputs to the DataStore simultaneously. Subsystem 1 is higher priority and pre-
vails. The output of Subsystem 2 at this time will never appear in the DataStore.
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This illustrates the way that data in the DataStore may be visible for uneven time
intervals, but the situation is always determinate. Figure 5-9 on page 5-23 illus-
trates a situation where data from a slow subsystem may never show up in the
DataStore, and how to work with this situation.

Enabled Subsystem 1 runs exactly twice as fast as free-running Subsystem 2, and
thus has priority for execution. However, both subsystems have the same skew or
start time, and thus are primed for execution at the same time; this fact is crucial to
the discussion.

When Subsystem 1’s first data output is ready, Subsystem 2’s time has not yet ar-
rived for having its data posted, and the Subsystem 1 output is posted without any
conflict. But at point B, both Subsystem 1 and Subsystem 2 receive a wakeup signal
at the same time, and Subsystem 1 executes first. At the wakeup point, data from
each subsystem from a previous cycle is ready to be posted simultaneously. The res-
olution is made in terms of Data Priority, which has the same ordering as Execution
Priority: the data from Subsystem 1 is posted, and that from Subsystem 2 is lost.

A C1B C2 E

FIGURE 5-8  Writing into a DataStore Register from Two Different Subsystems

FD

X

Y

DataStore update from Subsystem 1

DataStore update from Subsystem 2

Preempted, waiting to run

Data is lost

Available outputs from Subsystem 1

Available outputs from Subsystem 2

*

Y Y
*

Scheduler Time

Subsystem 1

DataStore

Subsystem 2

Key:

X X X XX
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This situation continues as long as Subsystem 1 is enabled and running, but when
the enabling signal for Subsystem 1 is removed, its outputs stop being posted and
the outputs of Subsystem 2 are able to be posted (point C) in the usual manner.

5.10 SuperBlock Transformation

Each SuperBlock has computational timing attributes (continuous or discrete, trig-
gered, etc.) SystemBuild provides a powerful feature that enables you to automati-
cally transform SuperBlocks from continuous to discrete or from one discrete rate to
another. There are two ways by which transforms may be accomplished. The
Transform SuperBlock dialog (invoked from the Build menu) allows multiple Su-
perBlocks to be transformed together and provides detailed control over how param-
eters are affected during transformation. A transformation capability for converting
a single SuperBlock is also provided through the SuperBlock Attributes dialog.

Transforming a SuperBlock preserves interconnections and labeling information,
but changes all the relevant block parameters in the SuperBlock.

A B C

FIGURE 5-9  Enabled Subsystem Writing into a DataStore

Enable Subsystem 1

Subsystem 1

DataStore

Subsystem 2

Key:
X

Y

DataStore update from Subsystem 1

DataStore update from Subsystem 2

Subsystem 2 is preempted for this time

Outputs generated but never posted

Available outputs from Subsystem 1

Available outputs from Subsystem 2

*

*
Y

X X
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NOTE: Transforming a SuperBlock overwrites the old entry in the SuperBlock
catalog; the system does not keep a copy of the old SuperBlock. It is wise
to make a copy of a SuperBlock before transforming it.

5.10.1 Transformation Limitations and Implications

Transformations may be between continuous and discrete SuperBlocks or between
two different discrete rates. The implications vary depending on the types of blocks
in the model. Algebraic, logical, and other blocks without dynamics or memory are
unaffected by transformation.

Limitations

■ The following blocks are supported only in continuous SuperBlocks and may
not be transformed to discrete: ZeroCrossing and Implicit UCBs.

■ The following blocks are supported only in discrete SuperBlocks and may not be
transformed to continuous:

● State Transition Diagram, DataStore, and FuzzyLogic blocks

● Signal Type Conversion blocks,

● IfThenElse, While, Break, and Continue blocks

● Condition blocks

● Procedure SuperBlock references.

Dynamic Blocks

Most dynamic blocks (TimeDelay and Integrators) maintain their coefficients un-
changed, except for the compensation for the new sampling interval (T).

Three dynamic blocks: StateSpace, NumDen, and PoleZero blocks, require new coef-
ficients. The method for transforming these three types of blocks between continu-
ous and discrete is based on Tustin's rule (also known as bilinear or trapezoidal).
The transformation used between continuous and discrete is:

EQ. 5-1

Transforming between discrete rates is done by first converting the current rate to
continuous time, then converting from continuous time back to discrete with the
new rate, always using Tustin's rule. See Example 5-2.

s 2 z 1–( )
T z 1+( )
-------------------------=
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NOTE: When transforming from discrete to continuous or discrete to discrete,
the new rates and coefficients must be applied with caution. During the
transformation, we move from the z domain to the s domain;
inappropriate results can be generated from StateSpace, NumDen, and
PoleZero blocks.

EXAMPLE 5-2: Transforming a Block

Assume a block sampling at 0.1 seconds in Num-Den format with transfer function
in the z domain = 1/z2, and we want to either change the sampling rate or convert it
to continuous. The resulting transfer function in the s domain is:

This continuous block represents a non-minimum phase system that approximates
neither the step nor the impulse response of the discrete system with transfer func-
tion = 1/z2, which one would assume to be a two sample delay.

However, the continuous subsystem does approximate a two-sample delay when
provided with sinusoidal inputs.

The better approach when transforming discrete rates is to go back to the original
continuous system and apply Tustin’s rule with the new sampling rate.

Gain Block

The Gain block is transformed using the pure-z transform. This transform method
is impulse-invariant, and it preserves the frequency domain characteristics of the
transfer function such as damping ratios and damping frequencies.

Integrators and PID Controller

Blocks that contain integrations (Integrator, LimitedIntegrator, and PIDcontroller)
retain the same coefficients and are simply changed to their discrete equivalents. A
discrete integrator can be selected from the block’s Parameters tab. Integrators for
these blocks are:

1 Forward Euler

2 Backward Euler (Default)

3 Tustin (Trapezoidal)

s 20–( )2

s 20+( )2
--------------------------
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5.11 Transformation Methods

SuperBlocks can be transformed in several ways:

■ Transform nonlinear dynamic systems from Xmath using the lin and discretize
functions.

■ Use the Catalog Browser Tools→Transform option.

■ Change the SuperBlock type from the SuperBlock Properties dialog box.

NOTE: If you are uncertain about the outcome of the transformation, you should
update the SystemBuild Catalog (from the editor, select File→Update),
then save the SystemBuild Catalog before proceeding.

5.11.1 Transformation Using the Transform SuperBlock Dialog

Before the transformation, go to the Catalog Browser and select the SuperBlock(s)
you want to transform; if you want to transform hierarchy, select Edit→Hierarchy
Select Mode before making a selection. All the SuperBlocks in the hierarchy will be
transformed to the new settings; the only restriction is that the hierarchy cannot
contain any State Transition Diagrams or DataStores. If any of the SuperBlocks is
triggered before you perform the transformation, it will become enabled.

After the selection, select Tools→Transform. The Transform SuperBlock dialog ap-
pears. You can change the block type. Other fields are as follows:

1. Discrete to Discrete Transformation: Rate Only or Rate and Block Coefficients.

Coefficients apply for NumDen, StateSpace, and PoleZero blocks in a discrete-
to-discrete transform. Frequency-normalized systems require a rate-only trans-
form.

2. Transform Initial Conditions (of StateSpace Blocks). Enable or disable. See
Section 5.11.3 on page 5-28.

3. Sample Period (0 = continuous).

4. Sample Skew (the first period).

This dialog also allows timing attributes of discrete SuperBlocks (Free-running, En-
abled, Triggered, and Procedure) to be changed.

For additional help, press the Help button.
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5.11.2 Transformation Using the SuperBlock Properties Dialog Box

Transforming can also be performed from the SuperBlock Properties dialog. See
Table 5-2 for a summary of the differences between the two methods.

To use the SuperBlock Properties method, simply invoke the dialog and select a new
type. Note that with both methods, the transformed SuperBlocks overwrite the orig-
inal SuperBlocks.

If you change the rate from the SuperBlock Properties dialog, the changes are more
restricted:

1. Only the current SuperBlock is transformed: no hierarchy may be selected for
transformation. However, timing information for Condition blocks and Proce-
dure SuperBlocks that are direct children of this block are changed.

2. Initial conditions are not transformed.

3. If the rate is changed from one discrete rate to another (where both are non-
zero), the rate is updated but no transform occurs; there is no change in dyn-
amic block coefficients. (This lets you preserve sample rate normalized
systems.)

4. Changing between the different forms of discrete SuperBlock (Free-running, En-
abled, Triggered, and Procedure) is performed from the SuperBlock Attributes
dialog. To change between Continuous and Discrete non-Free-running, first
change to discrete Free-running and then to the other discrete form.

TABLE 5-2  Transforming SuperBlocks

From SuperBlock Properties Dialog Catalog Browser Tools Menu

Action Click on Continuous/Discrete field to
change; type in sampling rate
and skew.

Result Only the current SuperBlock be-
ing edited is transformed.

The SuperBlock and optionally its
lower-level SuperBlocks are trans-
formed.
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5.11.3 Initial Condition Transformations

When you enter a SuperBlock that has been transformed, it appears identical to a
SuperBlock originally created at that rate, with the following exception. If the Super-
Block was transformed from the Catalog Browser Transform tool and Transform Ini-
tial Conditions was enabled, then all StateSpace blocks in the transformed
SuperBlock(s) will have an Initial Conditions tag added to their initial conditions in
the block parameter dialog, identifying the rates from which the SuperBlock was
transformed.

The initial conditions themselves are not changed immediately, but the Initial Con-
ditions tag is a reminder that they will be transformed at simulation time. If you
later modify the initial conditions of a modified StateSpace block in a transformed
SuperBlock, the initial conditions are henceforth assumed to correspond to the cur-
rent rate of the SuperBlock, the tag disappears, and no transformation occurs at
simulation time.

5.11.4 Undoing a Transformation

■ A transformation initiated from the Transform SuperBlock dialog cannot be re-
versed.

■ Transformations initiated from the SuperBlock Properties dialog can be undone
with the general function Edit→Undo All. As the name implies, the SuperBlock
will revert to it state at the time the display was last updated to the catalog. All
changes to the SuperBlock and its displayed children will disappear.
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6 SystemBuild Customization

This chapter details how to customize SystemBuild with the /etc/user.ini file.
Users on UNIX platforms can perform additional customization with the resource
file /etc/Sysbld . This chapter contains the following sections:

■ user.ini File Format

■ Printer Settings (UNIX)

■ Comment Editor

■ Custom Menus

■ SystemBuild Resource File (UNIX)

6.1 user.ini File Format

The file $SYSBLD/etc/sysbld.ini defines SystemBuild’s default printing and edi-
tor settings, its menus, and other resources. You cannot change this file, but, you
can customize SystemBuild by creating a similarly formatted file named user.ini
that overrides or adds to sysbld.ini defaults. If your custom usr.ini file is
placed in $SYSBLD/etc (by someone with root or administrator privileges) all users
will see the customization (be sure to make a copy of the sample file first). System-
Build will also read this file if it is in your start-up directory.

The basic user.ini file format is shown in Example 6-1 on page 6-2. Use Xmath’s
copyfile  command to copy this file to your local start-up directory:

copyfile "$SYSBLD/etc/user.ini"

The user.ini file has two parts: a COMMON_SECTIONfor customizing environmen-
tal options and specifying text editors, and a SUPERBLOCK_EDITOR_SECTIONin
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which you can specify custom menus for the editor. Your local user.ini file only
needs to contain settings that differ from or override $SYSBLD/etc/sysbld.ini .
However, your customized user.ini file must present information in the same or-
der as that shown in the sample file. At a minimum, you must restart SystemBuild
after any change to user.ini . If your changes involve new scripts or programs that
Xmath must know about, you must restart MATRIXx.

EXAMPLE 6-1: Sample user.ini  File

#============================================================================
#                              user.ini
#============================================================================
#                      SystemBuild Configuration file for User Menus
#---------------------------------------------------------------------------
# This file contains settings used to customize the appearance and behavior
# of SystemBuild. This file provides examples for creating custom menus.
# The example template can be used to specify menu items. Any line in this
# file which starts with pound sign (#) is ignored as comment by SystemBuild
#
#============================================================================

#============================================================================
# COMMON_SECTION allows specification of options and text editors
#============================================================================

[COMMON_SECTION]

[OPTIONS]
TempDir    = "/tmp/"
IconDir    = "/usr/local/sysbld/icons"
PaletteDir = "/usr/local/sysbld/palettes"
TextEditor = "/usr/local/bin/emacs"
PrintCommand = "lp -h"
PrinterOption = "-d"
PrinterName = "hp13"
PrinterName = "hp9

[TEXT_EDITORS]

#--------------------------------------------------------------------------
# Unix example

#TextEditorItem = CommentEditor
#  Name     = "xemacs"
#  Path     = "/usr/local/bin/xemacs"
#  Extension = "txt"
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#--------------------------------------------------------------------------
# PC example

#TextEditorItem = CommentEditor
#  Name     = "Word Pad"
#  Path     = "C:\Program Files\Windows NT\Accessories\wordpad.exe"
#  Extension = "rtf"

#============================================================================
# SUPERBLOCK_EDITOR_SECTION allows specification of custom menus
#============================================================================

[SUPERBLOCK_EDITOR_SECTION]
# SuperBlock Editor

[MENU]

#--------------------------------------------------------------------------
# MenuItem   = PulldownMenu
#  Label     = &Custom
#  Help      = User defined Menus

# MenuItem   = PushButton
#   Label    = ls
#   Help     = Lists the files in the current directory through Xmath
#   FuncType = Xmath
#   Function = oscmd ("ls")

# MenuItem   = Separator

# MenuItem   = PushButton
#   Label    = pwd
#   Help     = Prints current working directory in Xmath
#   FuncType = Xmath
#   Function = oscmd("pwd")

#--------------------------------------------------------------------------
# MenuItem  = PulldownMenu
#  Label    = &System
#  Help     = User defined System Messages

# MenuItem  = PushButton
#  Label    = &Xterm...
#  Help     = Brings up an Xterm
#  FuncType = System
#  Function = /usr/bin/X11/xterm

# MenuItem  = PushButton
#  Label    = &Calendar
#  Help     = Brings up a Calendar
#  FuncType = System
#  Function = /bin/calendar
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6.2 Printer Settings (UNIX)

User.ini printer settings are ignored on Windows platforms; they will be read for
UNIX systems only.

To change the list of printer names and the printer command, edit the [OPTIONS]
block of the [COMMON_SECTION], as shown in Example 6-1. The PrintCommand
field specifies the UNIX print command without the printer option. The PrinterOp-
tion field specifies the option to be used before the printer name. The Printer-
Name specifies the names of the available printers.

6.3 Default Text Editor

The default text editor is used when you are typing directly into the Icon tab or
Comment tab text area.

NOTE: The comment editors (Section 6.4) require different settings; they are
launched independently rather than used in the block diagram.

The default text editor programs are vi (UNIX), and Notepad (Windows NT/95). You
can change the default text editor from the .ini file or from your operating system
command line.

To change the default text editor in your .ini file, go to the [OPTIONS] section, and
alter the TextEditor definition (see Example 6-1). For example.

TextEditor = "/usr/local/bin/xemacs"

Alternatively, type the appropriate command from your operating system command
line:

Editor_name is the name of your editor program (e.g., xemacs, wordpad, etc.). The
change will take effect after you close and reopen SystemBuild.

UNIX: setenv EDIT_COMMENT Editor_name

Windows: set EDIT_COMMENT=Editor_name
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6.4 Comment Editor

Text entered into the Comments tab can be used to document your work and/or
generate inputs for the DocumentIt program. SystemBuild allows you to choose a
text editor for the Comment tabs of the SuperBlock, block, or State Transition Dia-
gram (STD) Bubble or Transition dialogs. The text editor operates just as though
you had invoked it from the command line. To return to SystemBuild, exit the edi-
tor, using the editor's normal exit procedure.

You can remove unwanted editors or add new ones as demonstrated in
Example 6-1. See the [TEXT_EDITORS] block.]

The comments are stored as part of the catalog file when the model is saved, or
when a Real Time File (RTF) is generated. For a primitive block (not a SuperBlock),
the Comments are attached to the block dialog box. Although the comments docu-
ment is stored with the model file and cannot be accessed from outside System-
Build, you may save the file from within the text editor so that it can be manipulated
or used elsewhere.

A SuperBlock has two dialogs that have different meanings for the way that docu-
mentation is generated:

■ Comments in a SuperBlock Properties Dialog.

The comments document attached to the SuperBlock Properties dialog may be
referred to as a root document, and corresponds to a Computer Software Compo-
nent (CSC) or Low-Level Computer Software Component (LLCSC) document for
purposes of MIL-STD-2167A.

■ Comments in a SuperBlock Block dialog.

This dialog box pertains to one instance of the SuperBlock; i.e., to just one of
the potentially many references to this SuperBlock that may be scattered about
your block diagram. The comments document attached to this dialog box may
be referred to as a leaf document, and corresponds to a Computer Software Unit
(CSU) document according to the requirements of MIL-STD-2167A.

6.5 Custom Menus

You can define one or more menus in the SystemBuild editor menu bar. Your menus
may invoke MathScript functions or commands, send a command to your operating
system, or execute a shell script. (You cannot alter the standard SystemBuild
menus or their contents. The Catalog Browser and Palette Browser menu bars can-
not be changed.)
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Custom menus are defined in the platform independent ASCII file named
user.ini . In it you can add multiple custom menus; in the Editor, they will appear
before the standard Help menu in the order they are defined in the file.

■ To create a menu, you must first specify menuItem=Pulldown . Menu Items
that will appear on the pulldown menu can be PushButton (a normal menu en-
try), or Separator (a dividing line).

■ The Label is the text that will appear on the menu bar or menu, depending on
the menuItem  type.

■ The Help field is ignored on Windows platforms. On UNIX systems you have ac-
cess to the message area at the bottom of the SystemBuild editor. When the cur-
sor is over the labeled menu item, the text is shown in the editor message area.

■ FuncType can be either Xmath or System . If Xmath is specified, the call in
Function is sent to Xmath. If System is specified, the call is sent to the operat-
ing system and a separate system process is started.

■ Function is a legal call to Xmath or your operating system; the FuncType must
match this call syntax.

NOTE: You must restart SystemBuild whenever user.ini is modified or a new
user.ini  is introduced.

6.5.1 A Sample user.ini that Calls MSCs

$SYSBLD/examples/sbmenu contains the file user.ini and two MathScripts that
are called by the custom menus specified in the .ini  file.

The basic steps to create your own custom menus are:

1. Create a user.ini file (Section 6.1). You can copy a sample file from the Sys-
temBuild distribution; the sample calls two MSCs, so copy them as well:

copyfile "$SYSBLD/examples/sbmenu/forcedsave.msc"
copyfile "$SYSBLD/examples/sbmenu/renumber.msc"
copyfile "$SYSBLD/examples/sbmenu/user.ini"

COPYFILE copies the files to your current working directory.

2. Restart MATRIXX.

3. Try loading a model and calling the MSCs.
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6.5.2 A Typical Template for User Menus

A typical template for menu item declaration is shown in Example 6-2; this file can
be copied from $SYSBLD/examples/sbmenu/user.ini . The lines that start with
the pound (#) sign are comments. The template is structured into sections and sub-
sections. A typical option is set with the appropriate tag or identifier (for example,
the label of ls). To specify a pull-down menu, use MenuItem =PulldownMenu , fol-
lowed by MenuItem=PushButton definitions. Note, this template contains UNIX-
specific system calls that can be commented out or deleted  as necessary.

EXAMPLE 6-2: Typical user.ini  with Custom Menus

#===================================================================
#                              user.ini
#===================================================================
#               SystemBuild Configuration file for User Menus
#-------------------------------------------------------------------
# This file contains my personal custom menus.
# Any line that starts with pound sign (#) is ignored as # a comment.
#
#===================================================================
 [SUPERBLOCK_EDITOR_SECTION]
# SuperBlock Editor

 [MENU]

#-------------------------------------------------------------------
 MenuItem  = PulldownMenu
  Label    = &Global Diagram Changes
  Help     = These items globally change blocks in the current SuperBlock.

 MenuItem  = PushButton
  Label    = &Renumber
  Help     = Renumbers all blocks in current SuperBlock starting with 1.
  FuncType = Xmath
  Function = RENUMBER

#-------------------------------------------------------------------
 MenuItem  = PulldownMenu
  Label    = &Miscellaneous
  Help     = Miscellaneous functions and commands.

 MenuItem  = PushButton
  Label    = &ForcedSave
  Help     = Force save to an ASCII file named by time: dYYMMDDtHHMMSSsave.asc
  FuncType = Xmath
  Function = FORCEDSAVE
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6.6 SystemBuild Resource File (UNIX)

On UNIX systems, the ASCII file $SYSBLD/etc/Sysbld contains the SystemBuild
application defaults.

■ To change your SystemBuild colors or the size and placement of SystemBuild
window, make a local copy of this file and edit it as described in the following
sections.

■ If this file is modified in the $SYSBLD/etc directory, the new values will become
the defaults for all users who do not have a local copy of Sysbld .

When initializing your configuration, SystemBuild looks first in your working direc-
tory, then in the home directory, then finally in $SYSBLD/etc .

CAUTION: Version 6.0 and higher only read the Sysbld file (note the case). If
you have a local copy of an obsolete SysBld file, merge your cus-
tom settings into a local Sysbld file, then delete the obsolete file.

6.6.1 Controlling Colors

Colors, sizes, and positions of the SystemBuild and Interactive Simulation (ISIM)
windows can be adjusted by creating a SystemBuild defaults file named Sysbld .

Foreground and Background

Foreground and background colors in the SystemBuild and Interactive Simulation
windows are each controlled by two variables in the Sysbld file. The variables are
listed in Table 6-1.

TABLE 6-1  SystemBuild and ISIM Color Defaults

Variable Default

SystemBuild Editor

sysbld.background white

sysbld.foreground black

Interactive Simulation (ISIM) Editor

isim.background white

isim.foreground black
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The selection of colors that you may use in the screen specifications on UNIX plat-
forms are listed in the file /usr/lib/X11/rgb .txt , along with their RGB color
specifications.

SystemBuild and ISIM Color Settings

You can define a maximum of 14 colors in Sysbld . Colors are available in System-
Build through the color settings in the block dialog boxes. To view colors for the
higher hexadecimal numbers (those represented by an alphabetical character) select
a block, press 9, then press the apostrophe key repeatedly until the desired color is
displayed. The variables to be defined for these colors are sysbld.color1 through
sysbld.colorE for SystemBuild, and isim.color1 through isim.colorE for In-
teractive Simulation. The color names are the same as for the foreground and back-
ground colors.

6.6.2 Resizing, and Repositioning the Display

Each window’s position and size are defined by four numbers: the x and y location
of the screen window’s lower-left-hand corner, and the window’s width and height.
The numbers are percentages of the screen’s width and height, as appropriate.
Table 6-2 lists the variables and their permissible ranges.

TABLE 6-2  Display Sizing and Positioning Variables

Variable Range Default

SystemBuild Window

sysbld.percent.x_offset 1 ≤ X ≤ 99 28

sysbld.percent.y_offset 1 ≤ Y ≤ 97 25

sysbld.percent.width 1 ≤ W ≤ 98 70

sysbld.percent.height 1 ≤ H ≤ 96 65

Interactive Simulation (ISIM) Window

isim.percent.x_offset 1 ≤ X ≤ 99 2

isim.percent.y_offset 1 ≤ Y ≤ 97 0

isim.percent.width 1 ≤ W ≤ 98 72

isim.percent.height 1 ≤ H ≤ 96 60
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The dimensions are the percentage of the full-screen width or height inside the bor-
der of the window. The maximum values of the vertical percentage dimensions are
slightly lower than the horizontal dimensions to allow for the wider label border at
the top of each window, which is a system-dependent value equal to about 2% of the
screen height. The minimum width or height of a window is approximately 25% of
the full screen width or height.
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7 Simulator Basics

7.1 Introduction

Once you have built a model in the SystemBuild Editor you're ready to simulate and
analyze your system using the SystemBuild simulator. When prototyping a system
design, simulation tools allow you to readily perform experiments by providing an
immediate analysis of the current system. This chapter explains how to use the sim-
ulator and customize your simulations with simulation keywords. We also discuss
the following related functions: analyze , creatertf , lin , and simout .

7.1.1 Simulation User Interfaces

SystemBuild simulator can be accessed three different ways:

■ from the SystemBuild editor simulation dialog

■ from the Xmath command area

■ from the operating system command line

This variety affords flexibility in running, analyzing, and modifying your models,

7.1.2 SystemBuild Editor Simulation Interface

The simulator may be invoked from the SystemBuild editor by selecting Tools→Sim-
ulate. In the dialog box presented (see Figure 7-1 on page 7-2), you may enter the
time and input variables for your simulation, specify selected simulation keyword
options (including fixed-point arithmetic), and enter the output variable name. This
is the preferred way to invoke the simulator. Press the Help button on this form for
more information about how to select simulation options.
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7.1.3  Xmath Simulation Interface

The sim function at the Xmath command line allows you to specify a model cur-
rently loaded in the SystemBuild catalog (the model does not have to appear in a
SystemBuild window), the inputs to that model, and any simulation keyword op-
tions. The sim function can be incorporated in Xmath scripts, making it possible to
set up an environment, run multiple simulations, and analyze the results. This in-
terface is also well-suited for batch mode, where many simulations can be run un-
supervised.

Once the simulator has been invoked from Xmath, it remains memory-resident, so
that additional simulations run much faster than the first. (If for some reason you
have an active simexe process that will not close properly, you can use undefine
simexe  to terminate it.)

Sim Function Syntax

The basic syntax of the sim function is included here. If you have questions about
the syntax of the sim function or its keywords, type help sim in the Xmath com-
mand window.

FIGURE 7-1 Simulation Selection Dialog Box
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Two formats are provided to invoke the simulator from the Xmath command line.

yPDM   = sim("model", t, u, {keywords})
[t, y]  = sim("model", t, u, {keywords})

For the yPDMform of the sim function, the domain of the output Parameter-Depen-
dent Matrix, yPDM, is the time vector, t . For example:

y1 = sim("MySystem", t, u)

The above call simulates a model named MySystem . It returns the result as the
PDM named y1 . The following call returns the output column matrix y and the sim
time column vector t .

[t,y] = sim("MySystem",t,u)

model is a text string, which is the name of the top-level SuperBlock in the System-
Build editor.

sim keywords, like keywords in MathScript functions, are enclosed in braces, and
separated by commas. When a keyword is assigned a string value, the string must
be enclosed in quotes. See the online help for a complete description of all keywords.

t is the required time vector, which must be strictly increasing, and typically starts
with zero. It is conventional, but not necessary, to name the time vector t ; it can
have any valid Xmath variable name (alphanumeric plus underscore; no more than
31 characters; first character not numeric). For example:

t = [0:0.1:10]';

This creates a column vector of 101 values, starting with 0 and increasing in incre-
ments of 0.1 to 10. the square brackets are required; the apostrophe (') transposes
the matrix (vector in this case), and the semicolon suppresses echoing the 101 val-
ues to the screen.

u is an input data matrix (required if the model has external inputs), ignored if t is
a PDM. Both t and u must be of the same row dimension. The column dimension of
u must match the number of external inputs of the model. It is conventional, but
not necessary, to name the input vector u; it can have any valid Xmath variable
name (must be alphanumeric, alpha character first, no more than 32 characters).

The following call creates a vector of the same dimension and orientation as t , con-
sisting of all ones, and assigns it the variable name u.

u = ones(t);

Existing t and u variables can be used in the simulation dialog.
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Given a SuperBlock with three inputs, create an input compatible with the output
dimensions:

t = [0:0.1:10]';
u = [t,t,t];
y1 = sim("model",t,u'); # Time and input row dimensions doesn’t match
y2 = sim("model",t,u); # Works.

Background Simulation

The bg keyword causes a simulation to run in the background, freeing Xmath for
other work. This feature allows multiple simulations to run simultaneously. You can
monitor the progress of a simulation by watching the status of its output variable on
the Xmath stack. Therefore, if you wish to run multiple simulations, you must be
sure that the output variable names are unique (i.e., if you issue three simulation
commands and the output variable is y for each one, the ones that finish first will
be overwritten).

The familiar Xmath WHOcommand displays the variables in the current partition; if
the variable is stable, its dimension is shown; if it is still being calculated, i.e., if the
simulation is still running, the variable is followed by busy and the job number of
the related simulation process. See Example 7-1.

EXAMPLE 7-1: Using who and stop job

Type WHOto list Xmath variables. If a simulation output variable is followed by
busy , the simulation is still running. If your machine is fast, you may need to spec-
ify a lengthy time vector in order to observe this.

who

main:
                               t -- 10001x1
                               u -- 10001x2
                              y1 -- busy (job #1261)
                              y2 -- busy (job #1262)
                              y3 -- busy (job #1263)

To stop a particular job, type stop job = , followed by the job number:

stop job = 1262

Sim is stopped.
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Simulator Termination

The simulator will normally terminate automatically at the end of a simulation. Sim-
ulation termination conditions include:

■ End of the simulation input time-line.

■ Simulation error (divide by zero, square root of negative number, etcetera).

■ Error reported by UserCode Block

■ Stop Block encountered with input signal greater than zero

For interactive simulation (see ISIM, Chapter 8) each of these conditions terminate
the current simulation, however, the simulation may be restarted in the graphical
environment. Selecting File→Exit terminates ISIM.

In addition to the above, the user may decide to abort the simulation at any time by
hitting Ctrl-Break (Windows) or Ctrl-C (UNIX) in the Xmath window as long as the
simulator is running in foreground mode (the -bg flag is not being used). These key
combinations will immediately terminate the currently executing simulator, how-
ever, saved output data may be lost, and the termination section of UserCode Blocks
will not be invoked.

7.2 Parameterization

It is often useful to study the effects of changing one or more parameters in a sys-
tem and running repeated simulations. In selected fields in each block’s parameter
dialog, you may specify an Xmath variable name to be used in place of the block's
field data. Simply enter the variable name in the %Variable field of the block form.
The variable name can be entered with a partition specified (parti-
tion.variable_name ) or without (variable_name ). If you specify a partition
name, SystemBuild will look there to resolve variable names, not in the default par-
tition.

You may assign a default value for the variable. You can automatically copy the
Variable with its default value into the Xmath workspace. When you have typed the
default value and the Variable name, after you press Return on the keyboard you can
type Ctrl-p . This copies the variable name and value into the Xmath workspace, and
registers the fact that it is a %Variable that can be changed at simulation time. By
contrast, you can set the default value in the block form to be the same as the
Xmath value of the variable by entering the variable name in the value field of the
block form and pressing Return .
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7.2.1 The Simulation vars Keyword

The vars keyword provides control over whether the value of your model’s parame-
ters can be changed using Xmath variables.

If the vars keyword is asserted, the simulator will pick up %Variables specified in
the model and use them for simulation. Since the default for the option is on, pa-
rameter variables specified are always used unless you specify otherwise. If you de-
sire the default block data, specify {vars=0}  in the sim  options keyword list.

The block will use its default value if its referenced Xmath variable does not exist or
if there is an error in the variable data. Variable errors include:

variable's values are out of range

variable's dimensions are incorrect

variable does not match the expected data type

variable not found in this scope

7.2.2 Parameter Variable Scoping

Parameter variable scoping uses the hierarchical nature of SystemBuild Super-
Blocks in conjunction with Xmath partitions to allow you to assign separate param-
eter values to each of multiple instances of a SuperBlock, based on the partitions of
the calling SuperBlocks.

As mentioned in the previous section, you may enter a parameter variable in one of
two ways, either with or without a partition specified. If you enter a parameter vari-
able with a partition, the variable under the specified partition is used during simu-
lation instead of a value from the working partition. In this case there would be no
hierarchical scoping of the variable because it is explicitly specified.

Rather than specify the partition on a block-by-block basis, you may enter a parti-
tion name in the Partition: field of the SuperBlock Reference dialog. The simula-
tor will then look up the SuperBlock hierarchy for the existence of a partition name.
If the partition is specified, the simulator looks for each block parameter variable
under that partition. This is referred to as parameter scoping—the variable is in the
scope of the SuperBlock reference's partition.

If no partition is specified in the SuperBlock Reference dialog for this instance, the
simulator continues its search for the next SuperBlock up the hierarchy. If the
search through the SuperBlocks is exhausted, the simulator finally looks for the
variable in your current working partition. See Example 7-2 on page 7-7.
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EXAMPLE 7-2: Demonstrating Parameter Scoping

This example demonstrates the flexibility of parameter scoping; see Figure 7-2. In
Xmath you are working in partition main and have created three partitions X,Y,M .
You have also created the following variables under each partition:

main.A0 = 1
X.A1 = 5
Y.A1 = 2
M.A1 = 3

The model has two SuperBlocks, Top and Bottom . In the Top SuperBlock two dif-
ferent SB references of SuperBlock Bottom have been included. ref1 uses X as its
SB reference partition and ref2 uses Y as its SB reference partition.

Inside SuperBlock Bottom there are three Gain blocks with parameter variables,
A0, A1, and M.A1. Since M.A1 is explicitly specified, no hierarchical search is per-
formed, and variable A1 under partition M is picked up during simulation. Since
M.A1 has been set to 3, this block will have a gain of 3. For the gain block using
variable A0, the simulator begins its search up the hierarchy since no partition is
specified in the block. When it looks in ref1, it cannot find variable A0 in the X parti-
tion, likewise when it looks in ref2, it cannot find variable A0 in the Y partition. The
last place the simulator looks is in the partition main , your working partition. Fi-
nally A0 is located in partition main , so the block picks up a gain of 1.

FIGURE 7-2  Example of %Variable Scoping



Simulator Basics SystemBuild User’s Guide

7-8

For the block with A1 specified, a gain of 5 is picked up under the X partition for Su-
perBlock ref1 and a gain of 2 is picked up under the Y partition for ref2.

7.3 SystemBuild Keyword Default Options

SystemBuild default values are provided for each keyword used by sim and related
functions (lin , simout , etc.). Any option default is automatically overridden by
specifying a new value in the keyword list. A simulation invoked from the System-
Build dialog uses the same default values as the corresponding function call; selec-
tions made in the simulation dialog override any default value. To see all current
default values, type:

SHOWSBDEFAULT

You can use SETSBDEFAULTto alter the default value of any keyword. The new
value will be in effect until you change it or exit SystemBuild. For example,

SETSBDEFAULT, {autosavefile="autosave.cat",autosavetime=330}

This will set the selected keyword value as a default for your current Xmath session.
Note that the comma after SETSBDEFAULT is required.

You can use a null string to reset a keyword that takes a string variable as an argu-
ment. See Example 7-3.

EXAMPLE 7-3:  Reset a Keyword that Takes a String Argument

Enable minmax logging and set the default minmax dataset name to foo:

setsbdefault,{minmax = "foo"}

Disable minmax logging:

setsbdefault,{minmax = ""}

7.4 Operating System Command Line Simulation Interface

Simulation from the Operating System (OS) command line, like the Xmath com-
mand line interface, accepts the SystemBuild model, its inputs and any simulation
options as arguments. There is a direct one-to-one correspondence between the key-
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words of the Xmath sim function and OS command line options. Additionally, you
must specify the SystemBuild model file that contains your system.

Simulating from the OS command line gives you the benefit of working with OS
command scripting languages such as C shell or PERL. This gives you added power
to pipe files to other processes, redirect output to files, run automated simulations,
and more.

sbsim Syntax

The syntax of the sbsim executable is discussed here. If you need assistance with
the command's syntax or available options while working with the simulator, you
can get help from the OS command line:

sbsim -help

Help for sbsim is only available from the OS. The syntax for the sbsim executable is
as follows:

sbsim -[option] [argument] top modelFile

EXAMPLE 7-4: Using sbsim

To simulate a model called MySys located in the model file mysys.dat and to sup-
ply inputs t and u from the input file mysys.in and output the results in my-
sys.out , the command for invoking this simulation would be:

sbsim -i mysys.in -o mysys.out MySys mysys.dat

The default format for the output file is MATRIXX binary. To output your data in
ASCII format, invoke the simulation as follows:

sbsim -i mysys.in -o mysys.out -fsave 1 MySys mysys.dat

NOTE: The input file must be in MATRIXX saved format (whether it be binary or
ASCII) and contain a time vector t , and, if external inputs are required,
an input data matrix, u.

To avoid retyping your options each time you invoke the simulator, you can use the
-opt keyword, which takes as an argument a file that lists all the options for a par-
ticular simulation. The sbsim syntax for this option is:

sbsim -opt optionFile top modelFile
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In the option file, each option and its argument must be listed on a separate line.
Below is a sample options file which specifies the input and output files, the output
file format, and the QuickSim integration algorithm.

-i mysystem.in
-o mysystem.out
-fsave 1
-ialg 8

If an option is listed twice, as in the following example, only the last option encoun-
tered is used by the simulator:

-i mysystem.in
-o mysystem.out
-fsave 1
-i myothersystem.in
-ialg 8

The input file myothersystem.in  would be used in this case.

7.5 Analyze Function

The analyze function lets you query the system SuperBlock hierarchy, the sys-
tem's parameter information, and any system errors. This information is useful for
documenting system characteristics, but more importantly is an essential tool for
debugging your models before simulation. The analyze function returns a list with
all the names and numbers of inputs, outputs, and states of the system. It displays
this list and a map of the SuperBlock hierarchy.

The analyze function is automatically invoked by the simulator, but can also be di-
rectly invoked from the Xmath command line or the Build pulldown.

7.5.1 Analyze from the Xmath Command Area

The syntax for the analyze  function is as follows:

sbInfo = analyze("model",{keywords})
subsysInfo=analyze("model",{keywords,subsystem})

When the subsystem keyword is not present, sbInfo is an Xmath list object con-
taining the following information:

SBInfo(1) Number of inputs

SBInfo(2) Number of outputs
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When subsystem  is used, the list object returns the following information:

In Xmath, you can index into the list object to get specific information. For example:

sbInfo(11)

ans (a string) =   hybrid multirate

analyze outputs are stored on the Xmath stack. and the following information is
shown in the Xmath Command Window message area by default:

■ The SuperBlock Reference Map, including:

● Subsystem Number (continuous = 0, 1 = fastest discrete, 2 = second fastest
discrete, etc.)

● SuperBlock Names

● Library Number, if any

■ Number of inputs

SBInfo(3) Number of implicit outputs

SBInfo(4) Number of states

SBInfo(5) Number of implicit states

SBInfo(6) Names of inputs

SBInfo(7) Names of outputs

SBInfo(8) Names of implicit outputs

SBInfo(9) Names of states

SBInfo(10) Names of implicit states

SBInfo(11) System attributes: continuous, discrete, hybrid, or multirate

SBInfo(12) Rates of subsystems, ordered from slowest to fastest

subsysInfo(1) RateArray.The rate array lists the subsystem the SuperBlock
has been assigned to. All continuous SuperBlocks are given the
value 0 and all DataStores are given the value -1.

subsysInfo(2) Parent Index. The parent index contains the index for the name
of the Parent SuperBlock in the SuperBlock name array (sub-
sysInfo(4) ).

subsysInfo(3) Block IDs.The block ID array contains the block ID of the Super-
Block reference within the Parent SuperBlock.

subsysInfo(4) Names Array.The names array contains the name(s) of every Su-
perBlock in the model.
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■ Input names

■ Number of states

■ State names

■ Number of outputs

■ Output names

■ Sampling rate status, including all rates for multirate and hybrid systems

If the analyze keyword silent is used, analyze generates the output list, but will
not display system inputs, outputs, states, and block names.

The analyze keywords delaybuf , vars , and typecheck are the same as corre-
sponding sim  keywords. See the online help.

The sbdefaults keywords also apply to analyze . For instance, if you want type
checking to be on at all times, then you can set it by typing:

SETSBDEFAULT,{typecheck = 1}

7.5.2 Analyze from the SystemBuild Editor

The SystemBuild Analyze SuperBlock dialog is available from the SuperBlock editor.
Select Tools→Analyze. See Figure 7-3 for this dialog.

For a complete explanation of the Analyze tool, open the tool and press the Help
button.

FIGURE 7-3  Analyze SuperBlock Dialog Box



SystemBuild User’s Guide Simulator Basics

7-13

7

7.5.3 Automatic Analyze

Since there can be no system errors in your model before you run a sim, the simula-
tor runs analyze automatically on newly edited models. Automatic analyze pro-
vides you with the analyze outputs, system errors and the SuperBlock hierarchy,
but not the system parameter information. If you wish to view your system's param-
eter information, the analyze function must be explicitly executed from the Sys-
temBuild editor Tools menu, or from the Xmath command area.

7.6 Algebraic Loops

An algebraic loop occurs in a block diagram when an input to a block depends on
one of the outputs of the block from the current cycle. This is illustrated in
Figure 7-4, where the input to the gain of 2 block is dependent on its output. This
results in a situation where the simulator cannot readily decide which block to eval-
uate first.

There are several practical problems with the presence of algebraic loops; for exam-
ple, the function evaluation provided by most algebraic solvers may not give a fine
enough resolution for a solution to be reached; or a signal may be needed for initial-
ization of the loop before the signal is generated. For most systems, the use of a de-
fault value for initial states (zero, for example) is usually inappropriate.

FIGURE 7-4  Algebraic Loops Computation Problem
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A simple continuous-time example, Figure 7-4 on page 7-13, illustrates some of
these problems. The following system is entirely algebraic, consisting of a summer
and two gain blocks. The transfer function for this system is:

This is equal to 2/7. If one were to propagate the input several times around the
loop, trying to obtain the solution, the process would prove to be unstable:

C=0 to start.

A = 1 + C = 1
B = 2 * A = 2
C = 3 * B = 6 (6 disagrees with 0, do another pass)

Pass No. 2:

A = 1 + C = 7
B = 2 * A = 14
C = 3 * B = 42 (42 disagrees with 6, do another pass)

The numbers just get bigger until the ---FIXUP OVERFLOW--- message occurs.
The starting and finishing values for C will never agree, and the system runs away.

The solution to this particular example lies in selecting an integration algorithm de-
signed to solve algebraic loops: the implicit Stiff System Solver, DASSL, or ODASSL
(which works the same, for over-determined systems).

Other problems with algebraic loops occur when the SystemBuild simulator has dif-
ficulty deciding where in a loop to start its processing. As shown in Figure 7-5 on
page 7-15, the UserCode block (UCB) is a block that accepts a number of inputs and
generates corresponding outputs. On initialization, however, the situation becomes
more problematic. For example, if UCB_1 has no direct (or feedthrough) terms, then
it may be necessary for the system to evaluate the outputs of the UCB before it eval-
uates either SuperBlock_1 or SuperBlock_2. If so, you will probably need to furnish
initial states for the UCB. On the other hand, if there are direct terms in the UCB,
SuperBlock_1 may need to be executed first, to supply the UCB inputs to process. If
so, SystemBuild may have difficulty determining which block to process first. One

G1
1 G1 G2×+
-------------------------------------
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way to help is to set as many initial states as possible in any system with an alge-
braic loop, to help the system condition its calculations on start-up.

DASSL is the method of choice when a system has algebraic loops, since an operat-
ing point is computed for the loop instead of adding a delay. This allows the true
system model to be integrated, and avoids any adverse effects a delay may cause in
the system. DASSL has a built-in method for changing the error norm used for the
computation of its local error test. See Section 11.7.2 on page 11-32 for more on
DASSL.

Connecting one of the outputs of a SIMO block to one of its inputs† will result in an
algebraic loop being detected. See Figure 7-6 on page 7-16 for an illustration of this
idea. The blocks at A in the figure are not the same as the blocks at B, because the
simulator tries to execute both parts of the SIMO block (serial number 1) at the
same time, and cannot. Using the default integration algorithm in SystemBuild, a

† They will have to be connected through other blocks because the
SystemBuild Editor won’t let a block’s output be connected to one of its
inputs. The algebraic loop condition won’t occur if one of the blocks presents
a computational delay.

FIGURE 7-5 Algebraic Loops Initialization Problem
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delay will be inserted in the loop, and the output of the blocks at A lags the outputs
at B by one cycle.

Finally, if you wish to insert initial conditions for the algebraic loops reported by
SystemBuild (the ordering is indicated in the warning message), you can use the op-
tion yimp0 in the sim , simout , and lin functions. When you do this, the operating
point computation that calculates the algebraic loop values uses the initial condi-
tion yimp0 as its starting value. In order to skip this operating point computation,
use the option {initmode=4} . When the operating point computation is skipped, it
is the user’s responsibility to provide consistent values for yimp0 .

7.7 lin Function

The lin function performs linearization of a continuous. discrete, or hybrid system.
Both explicit and implicit forms of linearization are supported.

The forms of the command are:

sys = lin("model", {keywords})
list = lin("model", {implicit, keywords})

For a complete treatment of lin type help lin in the Xmath command area, or see
Chapter 9. For the impact of fixed-point arithmetic on linearization, see Section 15.6
on page 15-44.

FIGURE 7-6  MIMO Blocks Example

A B
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7.8 simout Function

Simout can extract the dynamic state values (x ), rates (xd ), outputs (y ), and contin-
uous implicit outputs (yimp ) from a SystemBuild simulation, either at the initial
time or at the end of a simulation. If any of the values are extracted at the initial
time, this represents the starting operating point of the system, taking only the ini-
tial conditions into account. If values are extracted after a simulation, they repre-
sent a snapshot of the system’s operating point at the completion of the simulation.

To run simout  from the Xmath command prompt, enter the following:

[x,xd,y,yimp] = simout(model, {keywords})

where model is a string that is the name of a top level SuperBlock in the current
catalog. All simout keywords are identical to their sim keyword counterparts. As
with the analyze function, the sbdefaults apply. For a complete explanation of
this function, go to the Xmath command area and type help simout .

Simout-specific Keywords for Initial Condition

Outputs

One, two, three, or four outputs may be requested. If multiple outputs are re-
quested, they must appear in square brackets ([]).

u0 Real vector of initial inputs. The default is zero.

x0 Real vector of initial states. The default is the SystemBuild Catalog Value.

xd0 Real vector of initial state derivatives in implicit User Code Blocks. Note
that the meaning (and most likely the dimension) of xd0 is different from
xd in the output argument list.

yimp0 Real vector of initial implicit outputs (algebraic loops).

x The state vector.

xd The state derivative vector. For discrete subsystems, this is a pseudo-rate
obtained from the equation

xd = [x(k+1) - x(k)] / tsamp

where tsamp  is the sampling period of this discrete subsystem, y  = the
output values vector, and yimp = algebraic loop or implicit output values
vector.
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If your model includes Padé States, these are appended to the x and xd vectors, and
thus x  and xd  cannot be directly used in the next simulation.

For the impact of fixed-point arithmetic on simout, see Section 15.6.2 on
page 15-44.

7.9 creatertf Command

The creatertf command creates a Real-Time File (RTF) for use by AutoCode, Doc-
umentIt, or other products. The RTF is an intermediate form of the model file. The
syntax of creatertf  is as follows:

CREATERTF "model",{rtf, delaybuf, vars, typecheck}

model is a text string representing the name of a SuperBlock in the SystemBuild
catalog. For a full description of creatertf syntax, go to the Xmath command area
and type help creatertf .

7.10 Selecting an Integration Algorithm

Dynamic models created in SystemBuild can be broadly categorized as follows:

■ Continuous

■ Discrete, including discrete free-running, enabled, triggered, and/or procedure
subsystems.

■ Hybrid (i.e., a combination of continuous and discrete subsystems)

The problem of “simulating” the SystemBuild model, or obtaining a sequence of so-
lutions to the system equations given the user-defined initial conditions and input
vector, is fairly straightforward for discrete systems. Starting from the given initial
conditions, the discrete state equations are iterated until the specified final time.

Finding a numerical solution for continuous and hybrid systems, on the other hand,
requires a proper method of approximation. The purpose of an “integration algo-
rithm” or differential equation solver is to calculate an accurate approximation to
the exact solution of the differential equation. Then the solution is “marched” for-
ward from a starting time and a given set of initial conditions.

Since all continuous system integration algorithms are inherently approximations,
there are a number of important points to consider in selecting a proper method:
computational efficiency, truncation and round-off errors, accuracy and reliability
of the solution, and stability of the integration algorithm.
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7.10.1 Integration Algorithms

Table 7-1 lists the supported integration algorithms. The numbers correspond to
the selection indices used in Xmath and SystemBuild to specify an algorithm:

1. Euler’s method

2. Second-Order Runge-Kutta

3. Fourth-Order Runge-Kutta

4. Fixed-Step Kutta-Merson

5. Variable-Step Kutta-Merson

6. Differential-Algebraic Stiff System Solver (DASSL)

7. Variable-Step Adams-Bashforth-Moulton

8. QuickSim

9. ODASSL

10. Gear’s method

The default integration algorithm is 5 (Variable Kutta Merson). The algorithm may
be set globally using the command:

SETSBDEFAULT,{ialg=algnumber}

algnumber is taken from the list above. You can also determine the current default
number using the command:

SHOWSBDEFAULT

To set the integration algorithm for a given simulation run, see the simulation dialog
Parameters tab, or set the ialg  keyword in the sim  function call:

y = sim(model,t,u,{ialg = algnumber})

7.10.2 Integration Algorithm Recommendations

Table 7-1 on page 7-20 lists recommendations for choosing an integration algo-
rithm. Note that a great variety of systems will fall into more than one category listed
in the table. In choosing an algorithm, therefore, it is advisable to try more than one
method for those systems that belong to more than one class. These topics are cov-
ered in detail in Chapter 11.
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When algebraic loops are present in a model, all methods other than the Stiff Sys-
tem Solvers, DASSL and ODASSL, will introduce a delay into the system, even
though they may integrate the equations successfully.

TABLE 7-1 Selecting an Integration Algorithm

Problem Type Euler RK2 RK4 FKM VKM
DASSL,
ODAS,

GEAR
ABM

Quick
Sim

Linear, non-stiff + + ++ ++ +++ + +++

Linear, stiff + +++ + +++

Nonlinear with continuous
derivatives

+ + ++ + +++
fastest

Nonlinear with discontinuous
derivatives

+ + + + +++
**

+*

Nonlinear, stiff + +++ +

Systems with algebraic loops +++

Hybrid + +++ + +

Cont. with switch +++

Systems with UCBs ++ +++ ++

Differential Algebraic systems +++

ODAEs +++
(ODAS,
GEAR)

Key: +

++

+++

*

**

Marginally suitable.

Very suitable.

Best for this problem type.

Only with state events modeling the discontinuities.

Recommended with state events/appropriate dtmin  option.
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7.11 Simulation Errors

There are several categories of simulation errors, including those trapped by the
hardware or operating system, the SystemBuild analyzer, or the simulator. The fol-
lowing errors are trapped and posted by the simulation software, and the type of
block may be indicated.

7.11.1 Simulation Software Errors

sim_ERROR: Division by 0.0 produces infinity.

If the second input vector to a divide block contains a zero value, then this sim-
ulation error occurs.

sim_ERROR: Raise 0.0 to a nonpositive power.

A simulation error occurs when the input to an exponential block is zero and
the constant power is less than or equal to zero.

sim_ERROR: Both arguments to ATAN2 are zero.

The output of the arctangent function is undefined when both inputs are zero.

sim_ERROR: ASIN or ACOS argument out of range.

The input to the arcsine or arccosine function block must be in the range -1 to
+1. The output of this function is in the range 0 to π.

sim_ERROR: Natural log of zero or negative number.

A simulation error occurs if any input to the log block is less than or equal to
zero.

sim_ERROR: Square root of negative number.

A simulation error occurs if any input to the square root block is negative.

sim_ERROR: Raise negative number to noninteger.

A simulation error occurs when the input to an exponential block represents a
floating point power and the constant is less than zero.

sim_ERROR: Overflow in y = EXP(u) function.

Quantity out of range of hardware.
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7.11.2 Hardware Errors

Although the Simulation software catches all the errors that it can, errors that can-
not be checked for in advance are trapped by the hardware and posted by the Simu-
lation software.

--- Fixup Overflow ---

A floating point overflow occurred, and the software tried to compensate by substi-
tuting the largest possible real number. Simulation will proceed, although the re-
sults may be suspect.

--- FORMAT CONVERSION ERROR ---

--- FLOATING DIVIDE BY ZERO ---

--- INTEGER DIVIDE BY ZERO ---

--- SIGNIFICANCE LOST IN MATH LIB ---

--- MATH LIBRARY OVERFLOW ---

--- INVALID ARGUMENT TO MATH LIBRARY ---

--- LOGARITHM OF ZERO OR NEGATIVE VALUE ---

--- UNDEFINED EXPONENTIATION 0.**0 ---

--- FLOATING OVERFLOW ---

--- INTEGER OVERFLOW ---

7.11.3 Operating System Errors

The following errors are also caught by the operating system, and report an I/O er-
ror or other catastrophic system failure. If any of them occurs, contact your ISI rep-
resentative.

--- OPEN OR DEVICE ERROR ---

--- INTERNAL IO ERROR ---

--- REWIND ERROR ---

--- RESERVED OPERAND ERROR ---
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7.12 Scheduler

Different scheduler programs are used for simulation and for execution of generated
code. The SystemBuild scheduler simulator controls the overall flow of data between
subsystems, scheduling of the subsystems and posting their outputs. The generated
code scheduler is optimized for real-time operations, whereas the simulation sched-
uler is optimized for performance in simulation. Also, the actiming keyword is pro-
vided for matching AutoCode's scheduling of discrete models.

7.12.1 Subsystems

By default, subsystems are determined internally by the simulator and require no
intervention by the user. You can assign discrete and trigger SuperBlocks to sub-
systems using the processor Group ID field located on the SuperBlock Properties At-
tributes tab. Either way, an understanding of how they function is helpful in the
interpretation of simulation results. As discussed in Sections 5.7 and 5.9 sub-
systems in the SystemBuild simulator are groupings of one or more SuperBlocks
that fall into one of five categories:

The following is an example of how a hybrid (continuous and discrete) model is di-
vided into subsystems. Consider a model with two continuous SuperBlocks, a dis-
crete SuperBlock at a sample rate of 0.1, and two discrete SuperBlocks with a rate
of 0.05. The subsystems making up this model would then include one continuous
subsystem (made up of two SuperBlocks), a Free-Running Periodic subsystem
(made up of one SuperBlock) sampled at 0.1 and another Free-Running Periodic
subsystem (made up of two SuperBlocks) sampled at 0.05. Each of these sub-
systems will then accept inputs and post outputs under the control of the scheduler
at the scheduler-specified times.

Processor Group ID

Consider the model described in the previous topic, but increase the number of Su-
perBlocks with a rate of 0.05 to 200. By default, all 200 SuperBlocks would be as-

Continuous Integrated over each time interval in the simulation.

Free-Running Periodic Executed repetitively at a fixed frequency.

Enabled Periodic
Executed repetitively, but only while its enabling signal re-
mains active.

Triggered Executed when its trigger is detected.

Procedure Executed when its parent SuperBlock is active.
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signed to the same subsystem. As the number of SuperBlocks assigned to a single
subsystem increases, problems may occur in compiling the generated code. The
code for the subsystem may become simply too large for certain compilers to deal
with.

Also, in another scenario, in multiprocessor applications it may be desirable to
break up the generated subsystem code and divide its execution among several pro-
cessors.

The processor Group ID flag is a solution to these problems. For this flag to be used,
the SuperBlocks in the subsystem that is to be divided must have identical timing
attributes, and the same Processor Group ID value. SuperBlocks with the same tim-
ing attributes, but different Group ID values, will be assigned to different sub-
systems.

The Processor Group ID field is found in the SuperBlock Attributes dialog. It is en-
abled for Discrete and Trigger SuperBlock types only.

Using this flag, it is possible to divide up a set of SuperBlocks with identical timing
characteristics into differentiae subsystems. Using our example, the model may be
anywhere from one subsystem (all SuperBlocks assigned the same ID) to 200 sub-
systems (each SuperBlock assigned a unique ID) sampled at 0.05 seconds, depend-
ing on settings for the processor Group ID fields.

Subsystem Scheduling

The simulation scheduler uses the computational attributes of the subsystems to
establish the execution priority. The computational attributes include the type of
subsystem, and for discrete subsystems, the sample rate.

Besides determining the priority of each subsystem, a scheduler cycle or minor cy-
cle must be calculated so that each subsystem can be scheduled at the proper time.
The minor cycle is defined as the smallest sample rate of all the subsystems in a
model. If the shortest interval does not divide evenly into all the sample intervals, or
if there is a timing skew, a faster “pseudo-rate” is derived from the Floating Point
Greatest Common Divisor (FGCD) of the sample intervals. This is the largest floating
point value that can divide each member of the set of time intervals that must be
serviced into an integral number of times.

See Figure 7-7 for an illustration of these ideas. Subsystem 1 runs at a time interval
of 0.2 units, but Subsystem 2 runs at an interval of 0.3, so that no direct divisor of
the intervals is available, and the pseudo-rate of .1 is generated.
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Continuous Subsystem Scheduling

For subsystem scheduling the simulation time-line is segmented according to user
time points and discrete events. The continuous subsystem however, can be
thought of as running at all times throughout the simulation and is not scheduled
at discrete times. This subsystem rather is integrated continuously over each time
interval in a piece-wise fashion.

Discrete Subsystem Scheduling

For discrete subsystems, the scheduler is based on the principle of rate-monotonic
scheduling, deriving priorities for execution from the rate of periodic subsystems
and the timing requirement for triggered subsystems; the algorithm assigns higher
priority to the faster subsystems and lower priority to slower ones. The priorities
among the discrete subsystems are shown in the following table:

Priority Subsystem

1 Free-running Periodic

2 Enabled Periodic

3 Triggered Asynchronous (ASYNC)

4 Triggered As-Soon-As-Finished (SAF)

5 Triggered At-Timing-Requirement (ATR)

6 Triggered At-Next-Trigger (ANT)

Subsystem 1
Interval = 0.2

Subsystem 2
Interval = 0.3

Pseudo-Rate
minor cycle = 0.1

0 .2 .4 .6 .8 1.0

FIGURE 7-7 Derivation of a Pseudo-Rate
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Properties of Discrete Scheduled Subsystems

The scheduling of execution is permanently set for each type of subsystem, but the
posting of outputs can be modified with certain keywords. Posting outputs for Free-
Running and Enabled Periodic subsystems can be modified with the global CDELAY
(Computational Delay) keyword. When CDELAYis set, the output of discrete sub-
systems is delayed one minor cycle. Otherwise, the posting of the output occurs im-
mediately following the subsystem’s execution. For triggered subsystems, the
posting of outputs is controlled on a SuperBlock-by-SuperBlock basis. A description
of each of these posting options is given under Triggered Subsystems below.

Free-running Periodic Subsystems

A free-running subsystem is always enabled, and gets executed when its sample
time has arrived.

Enabled Periodic Subsystems

An Enabled Periodic subsystem runs when it is either enabled by its parent Super-
Block or by an input signal. A SuperBlock enabled by its parent executes at its sam-
ple interval as long as its parent is enabled. A SuperBlock enabled by an input
signal, on the other hand, is scheduled to execute at its sample interval as long as
the enable signal is true.

Triggered Subsystems

There are four types of triggered subsystems that differ in the way they post out-
puts:

At Next Trigger (ANT) The subsystem only posts its outputs when it is next triggered
for execution. ANT is used for modeling certain kinds of vari-
able-rate but repetitive activities, such as a shaft that rotates at
a variable speed.

At Timing Requirement
(ATR)

The timing requirement is specified in the SuperBlock dialog.
Outputs are posted that number of cycles after the subsystem
is triggered for execution. This type of posting is a way of plac-
ing a priority on the subsystem's output availability.
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Simulation actiming Option Scheduling

The SystemBuild simulator provides the actiming keyword in order to match Auto-
Code results for discrete systems. The simulator accomplishes this by matching Au-
toCode's scheduler cycle, system initialization, and execution and posting times for
each subsystem.

Two simulation keyword values are forced so that the initialization and posting of
outputs matches AutoCode:

7.13 Simulation Time Lines, Inputs, and Outputs

7.13.1 The Input Time Line

The input time line is formed from the time vector entered via the Simulation Pa-
rameters dialog Time Vector/Variable field (on the Parameters tab) or as an input to the
sim function. Consequently the time vector value must be a monotonically increas-
ing column vector. The simulator uses the time vector as follows:

■ The largest (and last) value in this vector is used as the simulation stop time.
Changing the largest value in the input time line changes the duration of the
simulation.

■ Time vector time points will be synchronized with input data points (see, Com-
puting External Input Values).

As Soon As Finished
(SAF)

The outputs are posted at the beginning of the minor cycle after
the subsystem finishes running. This type of posting sets the
subsystem output availability at the highest priority.

Asynchronous (ASYNC) The outputs are posted immediately (asynchronous to the
scheduler) if the triggering signal is a state event (see
Section 11.9 on page 11-42. If the triggering signal is not a
state event, the outputs are posted at the beginning of the mi-
nor cycle after the subsystem finishes running (identical to
SAF).

Keyword and Value Description

cdelay = 1 The output posting is always delayed one minor cycle.

initmode = 0 This keyword setting disables the initialization that is nor-
mally performed at simulation time.
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■ In continuous and hybrid systems that use variable step integration algorithms,
the user is guaranteed that the integration algorithm will converge on each of
these time points (note that there might be other time points for which the algo-
rithm will converge).

■ Outputs from the simulation are saved for each point of the input time line (i.e.
each point of the input time line is also a point on the output time line (see,
Output Time Line).

7.13.2 The Internal Time Line

The simulator calculates an internal time line based on the model and the integra-
tion algorithm selected. The values in the internal time line are not known prior to
the simulation.

7.13.3 Computing External Input Values

For every external input, a data point must be supplied for each time point of the in-
put time line. The input data must have the dimension:

(Number of input time points) x (Number of external inputs).

In the Simulation dialog, this data is entered in the Input Data/Variable field. For the
sim function, the input variable (traditionally named u) is paired with the time vec-
tor (referred to as t). The sim function allows you to specify a PDM (you cannot do
this interactively). The PDM’s domain is extracted for the time vector, and the range
will be used for input values.

Whenever the simulation requires external inputs, it first compares the current sim-
ulation time (from the internal time line) vs. the input time line. If the current simu-
lation time matches one of the input time points, the simulation reads the value of
the external inputs directly from the input matrix.
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If the current simulation time falls between two time points on the input time line,
the simulator performs a linear interpolation using the known data points and as-
signs the resulting value to the time point (on an input by input basis).

7.13.4 The Output Time Line

The simulator saves the values of external outputs at various times during the
course of the simulation. The collection of time points for which the external output
values are saved is referred to as the output time line. By default the output time
line includes the input time line.

The output time line is computed as follows:

■ Every time point on the input time line is also on the output time line.

■ If a “Reporting Period” (see, the sim keyword dtout ) is specified, every integral
multiple of this value is a time point on the output time line.

■ If “Use Extended Time Vector” (see the sim keyword extend ) is enabled, every
discrete subsystem transition time point, and every discrete event time point
will be added to the output time line.
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8 Interactive Simulation

This chapter describes Interactive Simulation (ISIM) in SystemBuild. You can ani-
mate a simulation session by placing interactive input and display icons into your
SystemBuild model; interactive simulation is helpful in debugging models. This fea-
ture contrasts with Interactive Animation (IA), an optional SystemBuild package
that lets you build separate stand-alone “control panel” displays for monitoring and
controlling SystemBuild simulations and the RealSim hardware interface. See
Table 8-1 for an illustration of the differences between ISIM and IA.

For a complete treatment of IA, see the Interactive Animation User’s Guide.

TABLE 8-1  ISIM and IA Compared

Interactive Simulation (ISIM) Interactive Animation (IA)

Operates inside SystemBuild only. In-
voked by calling sim  with the inter-
act  keyword, or checking Interactive
on the Simulation dialog.

Operates stand-alone only. A separate
license is required.

Block icons are placed inside System-
Build block diagrams.

A special IA Builder window is used to
construct block icon diagrams.

Icons are part of the block diagram,
stored with the SystemBuild model file.

Icons in separate .pic files, linked to
SystemBuild diagrams. IA Translator
converts .pic  files to SuperBlocks for
ISIM use.

Limited or optional full set of anima-
tion icons.

Full icon set only.

Provided as part of SystemBuild. Optional.
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An example of an ISIM screen is shown in Figure 8-1. In this example, you can man-
ually change the throttle setting, brake position, and road incline while the simula-
tion is running.

Using ISIM, IA diagrams (which resemble control panel displays) can be built up
quickly as part of a SystemBuild model. You can include IA block icons representing
analog and digital control and display blocks, adjust the attributes and parameters
of the block icons to fit the model’s needs, and connect the icons to inputs and out-
puts of interest in the SystemBuild model.

Building a model that has simulation displays and controls is no different from
building the rest of your model. You can select a block icon from a menu, drag it
into place, define attributes via an on-screen dialog box, and connect the icon to
other block icons.

When you finish your model and simulate it interactively, an ISIM display window
appears. You can start, stop, restart, and resume simulation, step through blocks,
view selected outputs, modify selected parameters during simulation, and other
functions.

FIGURE 8-1 Diagram with Input Icons and Stripchart/Text Displays
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ISIM may be executed as a background task under Xmath, which allows you to en-
ter commands in the Xmath window as an interactive simulation is running.

8.1 The Interactive Simulation Process

The IA icons are displayed when you select the IA button on the SuperBlock Editor
toolbar. You can select an icon and drag it anywhere in your model. The icon can be
connected to any SystemBuild block or blocks. The contents of the palette depend
on your license; the default icon palette available to all SystemBuild users is shown
in Figure 8-2. The separately licensed IA palettes are discussed in the Interactive An-
imation User’s Guide. Because SystemBuild is in a modal state when the IA palette
is open, only one IA palette can be displayed at a time.

The default palette supports:

■ Icons that provide inputs to SystemBuild blocks

■ Icons that display SystemBuild simulation outputs

FIGURE 8-2 Default Icon Palette
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NOTE: It is not necessary to include IA icons in your model to take advantage of
the other ISIM (data display, block and time stepping, RVE, etc.) However,
IA icons are the most convenient way to observe or set internal simulation
values while the simulation is executing.

8.2 The ISIM Window

When the interactive simulation starts the interactive simulator will be opened with
the simulated SuperBlock shown. At first glance it is very like the SystemBuild edi-
tor window, but you will note that the icon tool bar immediately below the menu bar
is different, as is the information displayed in the “hints” area.

ISIM options can be chosen from the tool bar or from a pulldown menu:

Variables Invokes Run-time Variable Editing (RVE), to allow you to change the
value of a %Variable at a point in an interactive simulation. See
Section 8.7 on page 8-15 for a complete treatment of RVE.

View Parent Displays the SuperBlock containing the current instance of the cur-
rently displayed SuperBlock.

Reset Initialize the model to its initial conditions (from the SystemBuild
catalog), with the input icon settings preserved from the previous
run.

Pause While the simulation is running, clicking this button temporarily
halts (“holds”) the simulation. You can also click in the Hold Time field
on the tool bar and type a time (in units commensurate with the
simulation t-vector) at which the simulation will pause next.

Resume To start a simulation, or restart a paused simulation, click on the
Resume button. Once the simulation reaches the end of the time line,
all buttons will be disabled, with the exception of the Reset button.
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8.3 Special Notes on ISIM

■ A principal use of ISIM is for debugging SystemBuild designs. Attach a numeric
output icon to any signals of interest (e.g., to every output of every block), and
run the model in Blockstep mode. The outputs are updated as you proceed.

■ By default, IA icons update at each input time point, but you can specify less
frequent updates in the Icon dialog box, by entering a value in the Sampling Inter-
val field.

■ You can click on IA input icons any time the simulation is running or paused,
and change any input value.

■ To monitor the outputs of any block in your model, place the mouse cursor on
the block and press v. The output labels are replaced by the current values on
each of the output pins of the block. Every time you click either Timestep or Block-
step (individually) or Resume followed by Pause, the values are updated; only the
labels may be displayed during Resume . You can monitor the outputs of any
number of blocks. To turn off the feature, put the mouse cursor on the block
and press v.

■ The current simulation time is always displayed in the lower right hand corner
of the ISIM window.

Block Step Show order of block computations. With ISIM paused or not yet
started, click repeatedly on the Block Step  Button to view the se-
quence of block executions; the next block to fire will be highlighted.
Note that if you step through an interactive simulation all the way to
the end all buttons will be disabled until the return button is
pressed (or you exit the simulation).

Local Block
Stepping

If enabled, limits block stepping to the currently displayed Super-
Blocks; the simulation will not stop on blocks outside this Super-
Block. This option is only available from the Debug menu.

Time Step Execute a single time step of the simulation. The time step is deter-
mined by the simulation time vector.

Hold Time This allows you to specify a time for the simulation to pause. Once
you start the simulation (by clicking Resume  on the icon bar), it will
run as long as Current Time is less than Hold Time . When the Current
Time reaches the specified Hold Time, the simulation pauses. After
making any desired changes to your IA icons, click Resume  to start
the simulation going again. For a way of using Hold Time, see
Example 8-1 on page 8-18.
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■ You may choose global or local block step mode. If Global, the Block Step button
will cause the interactive simulator to step to the next block that is to be exe-
cuted. However, the next block could be in another SuperBlock. If Local, the
Block Step button will resume the simulation and will pause only when the next
block is the currently viewed SuperBlock. Intervening blocks that are outside
this SuperBlock are executed, but do not cause the simulation to halt. The Lo-
cal Block Stepping Block Debug pulldown menu.

■ You can run ISIM on any SuperBlock from which simulation is available.

■ You can redefine the parameters of an IA icon while the simulation is running or
is paused; simply point the cursor at the icon and press Return. Values thus
changed pertain to this simulation run only and are not kept.

■ You can resize IA icons by placing the mouse cursor in the id area in the upper
right corner of the icon and clicking and stretching with the left mouse button.

■ To change the color of a icon on the screen, move the mouse cursor to the icon,
then repeatedly press the ’ key to cycle through the colors.

■ Only one palette of IA icons is available to with the default ISIM capabilities, but
users who have purchased the optional IA feature have access to seven palettes
of icons. Also, full IA users can add user-written icons and add palettes of icons
to the IA palettes. For more on this subject, see the Interactive Animation User’s
Guide.

8.4 sim Keywords for ISIM

The following syntaxes and keywords are provided:

To Invoke ISIM:

The general ISIM syntax is as follows:

sim(model_name, t_vector, ...,{interact, ...});

The model name and t-vector, are required. In the above syntax ... represents any
optional input (such as the u_vector), and additional simulation keywords.

To Invoke ISIM for a Specific SuperBlock:

Use the sbview keyword to specify the SuperBlock name. For example, if top is the
SuperBlock name, specify:

sim(model_name, t_vector, ...,{interact,sbview="top"});
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The sbview keyword is only available from the sim command in Xmath; it may be
discontinued in future versions.

Non-interactive Simulation with IA Blocks

In non-interactive simulation, IA display icons have no effect, while IA input icons
are held at their initial values. If the interact keyword is not present in the sim
call, the simulator will default to non-interactive simulation mode.

sim(...,{!interact})   #or
sim(...,{interact = 0})

To make ISIM the default, execute the command:

setsbdefault {interact=1}

Pausing ISIM at a non-zero time

sim(...,{interact, iahold = pausetm})

where pausetm is in the same units as the t- vector of the simulation and must be
less than the simulation duration established by the t- vector.

8.5 Standard Animation Icons

As shown in Figure 8-2 on page 8-3, the IA selection on the SystemBuild Toolbar
provides access to seven† predefined icons on a single palette.

Sim Input Icons:

■ An analog slider input

■ A push-button switch to input yes/no binary signals

Display Icons:

■ A strip chart history (output), suitable for use as an output gauge

■ A bar graph output display

■ Text

■ A numerical output display

■ An LED two-valued or three-valued output display

† Users who have purchased IA have access to multiple palettes of icons. Refer
to the Interactive Animation User’s Guide for details on the other palettes.
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Each icon in the palette is associated with a dialog box (similar in effect to the Sys-
temBuild block dialog box) that allows you to define the input and output parame-
ters, display attributes, and display text definitions for each icon type. You may gain
access to the icon dialog by placing the mouse cursor inside the icon and pressing
Return . The dialog is displayed. Icon operations are similar to SystemBuild block op-
erations with the following differences:

■ The icon selection area is in the upper right-hand corner of an IA icon, just as it
is with SystemBuild blocks, but is not indicated with a separate outline.

■ The icon displays are designed to work in color, and up to seven colors can be
used on the different fields of a given icon. On a monochrome device, the colors
are mapped into shaded patterns to emulate colors. The colors are defined
through the icon dialog box; to look at the color options for a field on an icon,
place the pointer anywhere in the field and click the left mouse button. Click a
color to select it. Most of the color fields are self-explanatory, but threshold col-
ors are displayed on an icon only when a user-specified value is reached. This
feature is convenient for generating alarms.

■ Icon Titles and Labels allow you to replace the default text in the fields with appro-
priate labeling for your icons. Click on the field to select it, backspace repeatedly
to delete the default contents, and type your own text.

■ Values displayed by certain monitoring and control icons can appear in either a
decimal or an exponential format, under control of the Format field. For example,
if exponential format is selected, 1.0E+02 may be displayed to represent a value
of 100. Click on the item in the dialog box to select and change it.

■ The Number Length field selects the number of digits used to represent the input
value. Placing the arrow in the field and clicking the left mouse button selects
the field, and placing the arrow to the left of the number and clicking the left
button of the mouse decreases the number of digits. Placing the arrow to the
right of the number and clicking the left mouse button increases the number of
digits. If the number length is too short to represent the number, a row of stars
(***...***), the same in number as the number of digits, is displayed at run time.

■ The Number Decimal Places field selects the number of decimal places to be dis-
played when representing the input value. 0 = no decimal point.



SystemBuild User’s Guide Interactive Simulation

8-9

8

■ Minimum and Maximum Input/Output Values display indicators (bars, lines, etc.) appear
in the display area of the icon when the input value lies in the range established
by the minimum and maximum values. Output icons will not generate signals
outside the user-specified range.

■ The Sampling Interval field accepts a positive integer only, to specify the update rate
for the a display icon. If the user-supplied value is n, the display is updated for
every nth input value that is presented. The default value is 1, which means
that the icon display is updated every input cycle.

8.5.1 Strip Chart Display Icon

The Strip Chart displays one row of values input for the last 100 (or other number)
time steps; it accepts only one input display vector. The majority of the parameter
fields in the dialog box are self-explanatory.

Number of
Bars

The number of most recent inputs is displayed. There is no arbitrary
limit on the number of bars that may displayed, except for the visibility
limit due to the resolution of the monitor. If you need a larger display,
stretch the icon larger by clicking in the ID corner and pulling to the
right, to gain space for more bars to be displayed.

Graph
Method

This field provides four different modes for plotting data:

Line A horizontal line elevated to the current value. This is the de-
fault.

Line fill A horizontal line elevated to the current value and color-filled
below.

Bar A solid bar of a single color for the basic graphing color or
threshold color that indicates the current value.

Bar Fill A graduated bar of a single color for the basic graphing color or
threshold color that indicates the current value. This is the de-
fault.

Histogram This field lets you show the values as a bar graph (Separated) or a stair-
step (Not Separated). The default is Not Separated.



Interactive Simulation SystemBuild User’s Guide

8-10

8.5.2 Multiple Line (Bar Graph) Icon

The multiple line bar graph icon allows up to five rows of line or bar graphs to be
plotted simultaneously.

8.5.3 LED Digital Monitoring Display Icon

The Digital Monitoring LED icon visually indicates ranges of values of a signal from the
SystemBuild model. You can program an LED for two or three colors, depending on
whether two or three ranges are specified for the input.

The First LED Color , Second LED Color , and Third LED Color fields specify the color for the
three ranges of inputs to be monitored, and the First Cutoff and Second Cutoff fields
specify the value(s) that will determine which LED is illuminated. If the two cutoff
values are the same, the second LED color never appears; this is the method for
showing only two colors.

8.5.4 Numeric Display Icon

This icon displays a numeric value, derived from an output of the SystemBuild
model. The text may appear in any of the supported fonts, as illustrated in
Figure 8-3; use the Text Font  field in the Dialog to select a font.

8.5.5 In/Out Pushbutton Switch

The Pushbutton Switch icon is a single-pole, single-throw switch used to input discrete
signals to the SystemBuild model. The icon dialog box permits you to:

■ Assign output values and colors to each switch position.

■ Specify the initial position of the switch.

■ Assign attributes that determine the general appearance of the icon (i.e., back-
ground color, border color, text color, icon title).

Movement field Allows you to have the graphs grow from left to right or right to left.

Number of Bars Can be any amount; if the number is large you can stretch the icon
by clicking in the ID corner and stretching it to the right.

Line or bar Graphing method may be selected.

Color selections May be made for the background, border, strips, and each plot.

Number Length field Select the number of digits in the display to be controlled.

Format field Select between Decimal  (default) and Exponential .
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8.5.6 Text Icon

The Text Icon lets you place text in the block diagram, up to 80 characters. The text
fonts are illustrated in Figure 8-3, which is an illustration taken from one of the
large IA palettes. The same fonts are supported through the single text icon in the
default ISIM palette, but only one font, Font 10, appears on the palette.

In the dialog box, the Alignment field allows the text to be centered (the default) or jus-
tified left or right about the text cursor. Click on the field to receive a menu of selec-
tions. The Direction field allows the text to be aligned horizontally (the default) or
vertically. Click on the field to receive a menu of selections.

An important use for the Text icon is for debugging SystemBuild models. Place a
test output icon at every signal of interest, and run the simulation in Blockstep
mode. The display outputs of each block are updated each step.

8.5.7 Slide Output Controller Icon

The Slide Output Controller controls the inputs to your model from a display with a slid-
ing bar that moves along a graduated scale, and has an exponential or a decimal
numerical readout. The dialog box for this icon lets you specify an initial output
value, minimum and maximum output values, increment and decrement values†,
and a range of values that controls the colors of the display area.

■ During the execution of a simulation, clicking on either arrow of the Slide Con-
troller icon increments or decrements the output value by the value displayed in
the icon dialog box.

■ Hold down the left mouse button on an arrow to get a continuous increment or
decrement.

† Be sure to use a positive value for both the decrement and the increment.

FIGURE 8-3 Text Font Choices
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■ Middle-click on an arrow to pop up a dialog box that lets you specify a new in-
crement or decrement value to be used in this Simulation run.

■ Click any mouse button in the numeric display area to pop up a dialog box that
lets you enter the exact value to the icon will output.

■ The output values may also be changed by dragging the sliding bar to the de-
sired output level, or by clicking on one of the graduations. Clicking a gradua-
tion moves the indicator to the position (and output level) marked by the
graduation.

8.6 Using ISIM

Constructing an ISIM model involves little more than adding IA block icons to a Sys-
temBuild model. Outputs to be displayed may be taken from any output pin of any
block, and inputs to the model can replace any internal or external inputs of the
block diagram.

The IA icons are invoked from a special palette (or set of palettes if you have pur-
chased the extended IA icon set) that is available from the SystemBuild toolbar.
Push the IA button to raise the palette, and drag an icon into the editor. To modify
its parameters. Select the block and press return to raise the IA icon dialog block.

8.6.1 Building the ISIM Car Model

Load the file named $SYSBLD/examples/auto/cruise_d.cat , and edit the Su-
perBlock continuous_automobile model shown in Figure 8-4 on page 8-13.

In this model, there are several test points and control points we might want to
study. At a minimum, we can add a speedometer and an accelerometer, and replace
each of the external inputs with an IA signal source. To add a speedometer, proceed
as follows:

1. Press the IA icon in the SystemBuild toolbar. The palette of IA icons appears.

2. Select the Strip Chart icon, and pull it toward the upper right of the screen. Do
not worry about exact placement of the icon: you can move it later.

3. In the icon dialog box, change the Icon Title field to read Speedometer , change the Y-
axis Label to read Speed , and change the Minimum Value to 0. Leave the Maximum
Value at 100 . Change color, then, click DONE.
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4. When the Speedometer icon appears on the screen, move it to the upper right
side of the display. You may want to fit the diagram to the window (with the
mouse cursor in open space, press f to make all the icons fit on the display).

5. To hook up the Speedometer, click the middle mouse button in the Car Inertia
block, then in the Speedometer icon, and observe that the connection is made.

6. Add an Accelerometer. Follow the steps for the Speedometer icon, but give it the
name Accelerometer, change the Y-Label to Acceleration, and change the limits
to -10 and +10. Change the First Threshold to Change Color setting to 0 and the
Second Threshold to Change Color to 5. Click DONE.

7. Move the Accelerometer to a convenient location near the top of the display. Re-
fer to Figure 8-1 on page 8-2 for a suggested arrangement of the icons. Connect
the Accelerometer Gain block to the Accelerometer display icon.

8. Put in a Slide Switch to furnish a road inclination. Select the icon from the pal-
ette and give it a name, road inclination. Change the limits to -10 and +10, and
change the Negative Decrement and the Positive Increment to 0.1. Click DONE and place
the icon in the upper left part of the screen.

9. Connect the slide switch to the input side of the Percent to Angle Gain block.
Click the middle mouse button in the slide switch, then in the gain block. When
the Connections Editor appears, click to connect these blocks, just like any
other. Click DONE to release the editor, and observe that the connection to the

FIGURE 8-4 continuous_automobile
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slide switch replaces the external input to the Gain block. External inputs thus
displaced still remain in the count of external inputs in the SuperBlock ID bar
at the top of the screen. Remove them (from the SuperBlock Attributes dialog
box) before analyzing the SuperBlock for simulation.

10. Add a brake control. Place another slide switch somewhere near the bottom
middle of the screen. Give it a name, brake . Make the limits 0 and 1. Change
the increment to 0.01 (this gives a delicate range of brake controls). Click DONE.

11. Connect the brake switch to the brake input Gain block and observe that the
brake  external input vanishes.

12. Add a throttle control near the lower left-hand side of the display. Name it
Throttle. Change the limits to 0 and 1 and change the increment to 0.01. Click
DONE to release the throttle control icon and connect the icon to the summing
junction at the left side of the engine part of the model. Compare the completed
model to Figure 8-1 on page 8-2.

8.6.2 Simulating the Car Model

Now we are ready to simulate the model using ISIM. Proceed as follows:

1. First create a t -vector large enough to give you a little time at the wheel. Type:

t = [0:0.1:200]';

Depending on the speed of your system, the 500+ time points may not be
enough to exercise the model adequately; test this parameter as necessary.

2. To run the simulation on the modified model, use the sim  command. Type:

y = sim("continuous automobile", t, {interact});

3. You will observe a display of your ISIM model. Click the Time Step button to
advance the simulation one step. Click the Resume button once to start the sim-
ulation and the Pause button to pause the simulation.

4. Test the controls before putting the car in motion. Click the Time Step button
once to see the Current Time setting move. Move the slide switches back and
forth, and observe that the changed values appear in the icons.

5. Put on your wraparound shades and driving gloves, and click the Pause button.
Move the throttle slide forward gingerly and learn to drive all over again.

6. After you pause, select Exit from the File menu to exit simulation and return to
Xmath.
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8.7 Run-time Variable Editor

The Run-time Variable Editor (RVE) allows you to change %Variables and Variable
blocks during the execution of an Interactive Simulation, AutoCode generated code
session, or RealSim test-bed session. For ISIM operation, it operates through the
Variable button on the ISIM toolbar. This feature differs from ISIM input icons that
allow you to interact with the input channels of the primitive blocks, where RVE al-
lows you to manipulate selected intrinsic block parameters whose values can be ad-
justed at simulation time. For a complete treatment of %Variables, see
“Parameterization”, Section 7.2 on page 7-5.

Figure 8-5 on page 8-16 shows the connections of RVE in the ISIM and RealSim sys-
tems. In the ISIM context within SystemBuild, as shown in the left-hand side of
Figure 8-5, the RVE software is part of the ISIM program, and the user interacts
with both ISIM and RVE through the ISIM toolbar. As shown in the right hand side
of Figure 8-5, the situation with RealSim is more complex. By default the RealSim
Client Control Panel is used, which contains an RVE GUI. Also, if desired, a mecha-
nism to access RealSim RVE from Xmath is supplied. Separate copies of the RVE
software are maintained for the RealSim Client Control Panel and for Xmath, and
they communicate with each other to service user Xmath requests. The RealSim
Control Panel copy of RVE also communicates with the RealSim, to perform the
user interface for RVE on the hardware testbed and the Xmath copy of RVE commu-
nicates with the RealSim to perform RVE script processing.

8.7.1 RVE and ISIM

This procedure explains using RVE from ISIM. The term “RVE Variable” appears
throughout this discussion: it refers interchangeably to both Variable Block vari-
ables and the subset of %Variables that are supported by RVE (see Table 8-2 on
page 8-21,) which are treated in the same way by RVE. The procedures for Auto-
Code and RealSim are similar; see the AutoCode User’s Guide and the RealSim
User’s Guide for details.

Proceed as follows:

1. Prepare your model for simulation. You must have one or more RVE Variables in
the model, although whether you have ISIM icons in the model is optional.

2. Be sure your RVE Variable is copied into the Xmath data area and given an ini-
tial value. If you are working with %Variables, there are two ways to accomplish
this. When you enter the %Variable, press Ctrl-p on the keyboard and the vari-
able will be entered automatically. Or enter it explicitly by typing the variable
name in the Xmath Command Area and setting it equal to the initial value for
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your simulation. Either way, the %Variable will acquire an initial value, as re-
quired by RVE. If you are using Variable Block variables, they are initialized by
SystemBuild; if you have given them no value, the default is 0.

3. When you run the simulation, make sure that the interact keyword is set
True. You can do this on the simulation dialog Parameters tab, or by including
the interact  keyword a sim  command issued from Xmath.

4. Because you are simulating interactively, the Interactive Simulator window ap-
pears when you execute the sim  command.

ISIM/RVE

RealSim Controller

Xmath

ISIM
Control Panel

Xmath

Interactive Simulation

rve_update
rve_get

rve_put

User

RVE

Interaction

FIGURE 8-5 RVE in ISIM and RealSim Contexts
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RVE
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RVE
XI/O

Paradigm

rve_update
rve_get

rve_put
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RVE may be invoked by selecting Edit→Variables or pressing the RVE icon on
the ISIM toolbar. The simulation may be executing during the editing process,
or may be paused.

5. Figure 8-6 shows a typical Variable Browser dialog. To change a column width,
click on a divider and drag it left or right. To edit a variable, double-click on its
name, or select the name, then select Edit→Open.

6. You may add new values into the variable spreadsheet or define them from the
Xmath command area. After you have edited the variable, click OK. This will
cause the RVE browser to be displayed again. You may now select and change
another RVE variable; there is no limit to the number of RVE variables you can
change. When you are finished adjusting the variable values, use Edit→Select
Modified to select the changed variables, then select Edit→Download or press
the Download  button on the Browser toolbar to complete the edit.

7. The new RVE variable values will be available immediately. If the simulation is
running while the edit is taking place, the edit will apply to the next sim time
step.

Example 8-1 on page 8-18 gives a step by step example of using RVE.

FIGURE 8-6 Run-time Variable List Dialog
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EXAMPLE 8-1: Edit the Predator-Prey Model During a Simulation

In the following example, we run part of a simulation with a critical parameter at
one value, then stop and change the value of that parameter. To copy the data to
your current working directory, type:

copyfile "$SYSBLD/examples/pred_prey/pred_prey.cat"

1. Load the file. From the Catalog Browser, open Predator_Prey.

2. The Efficency_factor block is parameterized via the %k parameter. To initialize
this value, define it in the Xmath Command Area:

k = .5;

3. Enter values for t  (time) and u (input):

t = [0:.1:100]';
u = [ones(t)];

4. Select Tools→Simulate to raise the SystemBuild Simulation Parameters dialog.
Type t in the Time Vector filed, and u in the Input Data field. In the lower right
portion of the dialog, enable Plot Outputs and Interactive simulation. Press OK.

5. When the ISIM window appears, enter 50 in the Hold Time field (on the icon bar)
then press the Resume button (the green triangle). Observe that the Time field in
the lower right hand corner of the ISIM window advances until it reaches 50,
then stops.

6. Click on the RVE icon. In the Run-time Variable Browser, double-click on k.
Change the value of k from .5 to .9. Press OK.

7. Back in the Run-time Variable Browser, select k, then press the Download button.

8. Back in the ISIM Main window, click Resume , and observe that the Time indicator
advances to 100, then stops. Select File→Exit to return to the SystemBuild edi-
tor. The plot produced should look like Figure 8-7 on page 8-19.

An examination of Figure 8-7 shows how changing a parameter of a model can
make significant changes in the simulation. In the left half of the plot, before time
point 50 is reached, predator (below) and prey (above) populations are interacting in
a certain balance. Then, at 50, where the Efficiency_factor, k , was increased, this
corresponds to an increase in the efficiency of the predator, and the amplitude of
the population of predators increases: at certain times in the cycle, there are more
predators than ever before. This increase is at the expense of a considerable diminu-
tion in the prey population, which at best is scarcely more than half its previous
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maximum size. And the predator population suffers, too, as can be seen at the pred-
ators’ minimum population level, which is lower than it ever was in the past.

8.7.2 RVE Commands and Functions

You can operate and control RVE from Xmath. A full set of Xmath commands and
functions allows you to write MathScripts that perform all the RVE functionality
documented in this section. You must run ISIM in background to use these com-
mands.

To do this, specify one of the following:

sim(...{bg})
setsbdefault, {bg = 1}

These commands are treated in more detail in the online help. To see a complete
listing of the RVE commands in the online help, type help rve in the Xmath com-

FIGURE 8-7 Plot with Run-time Variable Editing Illustrated
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mand area, or go to the MATRIXX help area and select the RVE subtopic. From this
point you can navigate to a complete description of the following functions.

rve_start Enable RVE and its commands and functions. No RVE commands or
function calls can be used until an rve_start  has been executed.
RVE_start only works after ISIM has been started, or the
attach_realsim  function has attached Xmath to an RealSim ses-
sion.

rve_stop Disables RVE and its commands and functions. No RVE command
can be executed after an rve_stop , except rve_quit  to terminate
the session or rve_start  to reenable the RVE commands.

rve_get("var_name")

Retrieves the current copy of an RVE Variable from the RVE work-
space.

rve_put("var_name", var_val);

Assign the value var_value to RVE Variable var_name . This value
is in an intermediate state now and is not available until an
rve_update  command is issued.

rve_reset("var_name")

Resets the working copy of an RVE Variable. If a variable has been
modified via the rve_put  command and has not been updated yet,
the rve_reset command will reset the working copy of the RVE Vari-
able to match the simulation.

rve_update( "var_list_str" )

Updates the %Variables in the simulation with the contents of the
RVE workspace. The RVE workspace is modified with the command
rve_put . All the modified fields in the RVE workspace are updated in
the simulation by default. If any RVE Variables are specified, then
only those variables are updated.

rve_info Retrieves and displays the names of all the RVE Variables that are in
the model and its current status and update status. The return value,
output , is binary: 1 if the operation is successful, 0 if not.

rve_quit Detaches Xmath from RealSim. This command is not intended for
ISIM.

attach_realsim

Attaches this Xmath session to a RealSim session (rtmpg)  that is
currently running. The RVE Variable output will be locked while you
are attached to the RealSim.
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8.7.3 RVE-Compatible Blocks

Table 8-2 shows the blocks that can be used with RVE. Most %Variables on most
blocks are compatible with this feature.

TABLE 8-2  Blocks Supported in RVE

Block Type Supported Parameters
Unsupported
Parameters

AlgebraicExpression “P” parameters Equation String,
Initial Values

BiLinearInterp Input1Points, Input2Points,
OutputValues

BlockScript block dependent – right hand arguments
only

ConstantInterp InputPoints, OutputValues

ConstantPowerU Constant(s)

DeadBand Deadband(s)

Decoder InMin, InMax

Encoder OutMin, OutMax

Gain Gain(s)

Hysteresis Width, Slope InitStates

LimitedIntegrator Upper, Lower, OutGain InitStates

LinearInterp InputPoints, OutputValues

Limiter Lower Bound(s), Upper Bound(s)

MultiLinearInterp Input1Points, Input2Points,
Input3Points, Input4Points,
Input5Points, Input6Points,
Input7Points, Input8Points,
OutputValues

InputLinDelta

PIDController PGain, IGain, DGain, DTimeConst InitStates

Polynomial Coefficients

Preload Preload(s), Slope(s)
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The following blocks are not supported in RVE; in most cases this is because there
are no numeric values associated with the block. In some cases the simulator trans-
forms the block to optimize its execution (as in the UniformRandom block), so that
numeric entries are not available internally during simulation time:

AbsoluteValue, Acos, Asin, Atan2, AxisInverse, AxisRotation, BiCubicInterp, Break,
BreakPoints, Cartesian2Polar, Cartesian2Spherical, ComplexPoleZero, Condition,
Continue, Cos, CosAsin, CosAtan2, CrossProduct, CubicSplineInterp, DataPath-
Switch, DataStore, DotProduct, ElementDivision, ElementProduct, Exponential,
FuzzyLogic, GainScheduler, IfThenElse, implicitUserCode, Integrator, LinearInterpT-
able, Logarithm, LogicalExpression, LogicalOperator, MathScriptBlock, NormalRan-
dom, NumDen, Polar2Cartesian, PoleZero, RelationalOperator, Sequencer,
ShiftRegister, SignedSquareRoot, Sin, SinAtan2, Spherical2Cartesian, SpringMass-
Damper, SquareRoot, StateSpace, STD, Stop, Summer, SuperBlock, Text, TimeDe-
lay, TypeConversion, UniformRandom, UserCode, While, and ZeroCrossing.

PulseTrain StartTime, Magnitude, Width, Frequency

Quantization Resolution

Ramp StartTime, Slope, Limit

ReadVariable Variables

Saturation Saturation Limit(s)

SquareWave StartTime, Magnitude, Width, Frequency

Step StartTime, Magnitude

SinWave StartTime, Magnitude, Phase, Frequency

UPowerConstant Constant(s)

Waveform StartTime, TimeCoord, SignalCoord

WriteVariable Variables

TABLE 8-2  Blocks Supported in RVE  (Continued)

Block Type Supported Parameters
Unsupported
Parameters
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9 Linearization

9.1 Linearization

The lin function is used to linearize a continuous, discrete (single rate or multi-
rate), or hybrid system, about an operating point. SystemBuild supports both ex-
plicit and implicit forms of linearization. For explicit linearization, a linear Xmath
system object is returned; for implicit linearization, an Xmath list object is returned.
Unless otherwise specified, the initial inputs are set to zero and the operating point
for linearization is given by the catalog definition of the initial states.

Simple systems (purely continuous or purely discrete), where all SuperBlocks have
the same computational timing attributes†, are linearized either by evaluating ex-
actly linearized models for the nonlinear functions, or by using finite-difference ap-
proximation. Multirate or hybrid systems are linearized using the Kalman-Bertram
method. The forms of the lin  command are:

sys = lin(model,{keywords})
list = lin(model,{implicit,other keywords})

The required input model is a string specifying the name of the SystemBuild model
to be linearized. Keywords are optional, except in the implicit case, where keyword
implicit must be present. To see a full description of each keyword, go to the
Xmath command area and type help lin.

sys is the Xmath System object in state-space form. sys incorporates the (A,B, C,
D) matrices of a system into an Xmath system object.

† Computational attributes are defined as the timing attributes and
requirements of the SuperBlock.
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The implicit form of linearization is:

In the implicit form, the list  output has eleven items:

9.2 Linearizing Single-Rate Systems About an Initial Operating Point

9.2.1 Continuous Systems

Continuous systems are represented by the following non-linear differential and
output equations:

y is the system output vector, is the time derivative of the state vector, x is the
state vector, and u is the external input vector.

list(1) = A

(2) = B

(3) = C

(4) = D

(5) = E

(6) = F

(7) = tsamp

(8) = State Names

(9) = Input Names

(10) = Output Names

(11) = Implicit Output Names

Eẋ Ax Bu+=

y Fẋ Cx Du+ +=

ẋ f x u,( )=

y g x u,( )=
EQ. 9-1

ẋ
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Explicit Form

The linearized system matrix in explicit form is:

where:

Implicit Form

The implicit linearization form assumes the system is in Differential-Algebraic form:

and the linearization becomes:

where:

ẋ

y

A B

C D

x

u
=

A
x∂

∂f=
x0 u0,

B
u∂

∂f=
x0 u0,

C
x∂

∂g=
x0 u0,

D
u∂

∂g=
x0 u0,

0 f ẋ x u, ,( )=( )
y g ẋ x u, ,( )=( )

Eẋ Ax Bu+=[ ]
y Fẋ Cx Du+ +=( )

E
ẋ∂

∂
f( )–

ẋ0 x0 u0, ,
A

x∂
∂f

ẋ0 x0 u0, ,
B

u∂
∂f

ẋ0 x0 u0, ,
=;=;= EQ. 9-2

F
ẋ∂

∂g

ẋ0 x0 u0, ,
C

x∂
∂g

ẋ0 x0 u0, ,
D;=;

u∂
∂g

ẋ0 x0 u0, ,
= = EQ. 9-3
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■ Time is assumed to be zero.

■ For continuous systems, algebraic loops are “resolved” (i.e., lin always com-
putes consistent values for algebraic loops, if any, except when the implicit
keyword is used). For discrete subsystems algebraic loops are resolved by de-
fault, but if you do not want algebraic loops to be resolved, specify algloop = 0 .
Note that algebraic loop delays will appear as additional states when this is
done.

9.2.2 Discrete Systems

Each discrete subsystem is represented by the following difference equations:

z represents the algebraic loop variables (if any) in the model. When algloop = 1
(the default case), the variable zk is eliminated by a Newton-Raphson root-solving
method, and the equations are reduced to:

After this step, the explicit equations are linearized. When algloop = 0 , the variable
zk is not eliminated; instead a delay is added to the zk term such that it becomes:

Thus, a new state vector is obtained by appending xk and zk-1. If this new state is
represented as X, then, the equations become, as before, of the form:

As shown, f is actually going to change when we do the math, and the linearization
is performed on these equations. As a result, every algebraic loop reported by Sys-
temBuild becomes a new state in this linearization.

xk 1+ f x k uk zk 1+, ,( ) X k f X k Uk Zk, ,( )= =

zk 1+ h xk uk zk 1+, ,( )= Zk h Xk Uk Zk, ,( )=

yk g xk uk zk 1+, ,( )= Yk g Xk Uk Zk, ,( )=

EQ. 9-4

X k 1+ f x k uk,( )=

yk g xk uk,( )=

zk h Xk Uk Zk 1–, ,( )=

X k 1+ f X k uk,( )=

yk g Xk uk,( )=
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9.3 Exact vs. Finite Difference Linearization

Many SystemBuild blocks have built-in exact linearizations, but the following do
not:

■ AlgebraicExpression

■ LogicalExpression

■ FuzzyLogic

■ MultiLinearInterp

■ UserCode

In the above blocks, when any (or all) of the perturbation vectors du, dx , dxdot are
specified, the linearization defaults to a central finite-difference linearization.

9.4 Special Linear Models

9.4.1 Continuous Time Delay

For lin the continuous time delay is modeled by a state-space representation using
a Padé approximation:

 with order of N = (order of D - 1)

This representation approximates . The order can be from 0 to 10, which is se-
lected in the block dialog box of the time delay block.

The initial conditions for the states in the continuous time delay model are assumed
to be zero; however they may be changed by the user from the dialog box. Use the
analyze function to determine the names of the states; analyze returns a list object
in which the state names are the 9th element:

SBinfo = analyze("model_name",{keywords});
snames=SBinfo(9)?

9.4.2 State Transition Diagrams

State Transition Diagrams (STDs) are used in a linearization only to compute the
system operating point. This means that initial state values are used to determine
state transition conditions and then, based on these calculations, new output val-
ues (either 0 or 1) are computed. These values form the operating point for the STD.

H s( ) N s( )
D s( )
-------------=

e
sτ–
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Thereafter, the STD is not perturbed during linearization, the linearized model is
zero, and the STD states are not included in the state-space representation.

9.4.3 FuzzyLogic Block

The FuzzyLogic block is treated as an algebraic block in linearization. The linearized
model uses finite differences, and the perturbation value can be defined in the Fuzz-
yLogic block dialog box.

9.4.4 Integrator Block (Resettable)

The linear model for the Resettable Integrator is an nth-order integrator. The resetta-
ble nature of the block is ignored during linearization.

9.4.5 UserCode Blocks

If you are writing UserCode blocks, code template files usr01.c and usr01.f are
provided in the directory $SYSBLD/src The function template usr01 aids in speci-
fying exact linearization models, See Chapter 14. If the template linearization is not
in usr01 , the default linearization is by finite differences.

9.4.6 Procedure SuperBlocks Referenced from Condition Blocks

In linearization, Procedure SuperBlocks referenced from Condition blocks are
treated as if they were algebraic; thus, the linearization of these blocks becomes 0.

9.5 Linearizing About a Final Operating Point

To linearize a single-rate system at a certain operating point, you must first per-
form:

y = sim(model,t,u)
sys = lin(model,{resume});

The resume keyword indicates that the linearization operating point will be the final
operating point of the previous simulation. To save the operating point at the end of
the simulation specify the lin options resumeto=filename and resume-
from=filename .

Alternatively, you can simulate the model until you reach the desired operating
point:

y = sim(model,t,u);
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Find the state at that operating point:

[x] = simout(model);

Linearize around the operating point:

sys = lin(model,{u0=u(length(t),:),x0=x})

9.6 Multirate Linearization

MATRIXX multirate linearization is based on the Kalman-Bertram method, which re-
turns a single-rate discrete linear system. The states of the new single-rate system
correspond to the continuous states and all the discrete states appended together.
The rate of the new state space representation is called the basic time period. For
multirate systems with rates that are integer multiples, the basic time period is the
slowest rate in the system.

In the Kalman-Bertram method, the linearized system is computed from the state
transition matrices of each subsystem. The state transition matrix is computed by
perturbing the solution over the basic time period with respect to the initial condi-
tions. The default perturbation value dx for the finite difference calculation is
dx = 0.001 * (1 + abs(x0)), where x0 is the initial state vector. If x0 is zero, the pertur-
bation value is 0.001.

The perturbation values for multirate linearization can be defined, using the key-
words du, dx , dxdot . The syntax is the same as in the single-rate case.

The Kalman-Bertram method requires that all samplers of discrete systems sample
at the beginning and end of the basic time period, since signals in discrete systems
are not defined between samples. btptol is a lin keyword with a default value
0.001. In this implementation, the basic time period starts at zero and all skews
must be less than 1e-6. The sample rates may be asynchronous, however. btptol
must be greater than zero. Smaller values of btptol more closely approximate sys-
tems with rates that are integer multiples. Larger values of btptol allow modeling
of systems with asynchronous rates.

The basic time period, then, is the first time when the samplers sample within a tol-
erance of each other, where the tolerance is proportional to btptol . Hence, for
asynchronous systems, a smaller btptol  results in a longer basic time period.
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At the end of the basic time period all discrete subsystems are executed and their
states computed. Suppose you specify:

y=sim(model,t,u); sys=lin(model,{resume})?

The sim must end at t, which should be a multiple of the basic time period, in or-
der to obtain a correct multirate linearization result.

9.6.1 Interpretation of Multirate lin Results

It is useful to review the theory of the Kalman-Bertram method to understand the
meaning of the equivalent single-rate linear system that is obtained. For example,
questions can be asked such as, in what sense are the systems equivalent? How
well does the single-rate system match the response of the multirate system?

Consider a simple hybrid linear system of the form shown in Figure 9-1.

Suppose the system uses these equations:

In this system, x1 = vector of continuous states, and x2 = vector of discrete states.

Continuous
Subsystem

Discrete
Subsystem

u y c

uy d

FIGURE 9-1 Hybrid Linear System

x
2

x1

yc Ccx1 Dcu1+=

x2 k 1+( ) A dx2 k( ) Bdu2 k( )+=

ẋ1 A cx1 Bcu1+=

yd k( ) Cdx2 k( ) Ddu2 k( )+=

u1 B11x2 B12u+=

u2 B2 1x1 B22u+=
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To apply the Kalman-Bertram method we need to compute an overall state transi-
tion matrix over the slowest rate in the system. This is done in two steps: first we
compute the state transition matrix from t = 0 to t = T- for the continuous system,
then we compute the state transition matrix for the discrete system from t=T- to
t=T+. The continuous state equation is computed as follows:

The second row of the matrix F is zero because the discrete states are assumed to be
constant over the sample interval. The third row is zero because the external input
is held to a constant value over the same interval. This assumption is an important
simplification for the Kalman-Bertram method, implying that a zero-order hold and
sampler are applied at the input to the system, and the sample interval of the sam-
pler is the basic time period. The discrete state equation is computed as follows:

For this part of the computation, the continuous states are held constant, as can be
seen from the first row of G below. Also, as seen by the last row of G, inputs are as-
sumed to be constant over the update of the discrete system. This means that the
sampler on the external inputs is not updated until after discrete subsystems are
updated.

The overall state transition matrix is:

The single-rate system state equation is:

Where  and Φ1, Φ2 are submatrices of Φ.

ẋ1

ẋ2

u̇

A c BcB
11

BcB12

0 0 0

0 0 0

x1

x2

u

=

            

F Matrix

x1 T
+( )

x2 T
+( )

u T
+( )

I 0 0

BdB21( ) A d BdB22

0 0 I

x1 T
-( )

x2 T
-( )

u T
-( )

=

              

G Matrix

Φ Ge
F T

=

xK 1+ Φ1xK Φ2uK+=

x
x1

x2

=
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We are now ready to discuss some aspects of this method. Because the input is held
constant over the calculation of the state transition matrix, one can observe that for
linear systems, the Kalman-Bertram method will give a good match to the steady
state step response of the multirate system. As the frequency of the input increases,
however, the match between the single-rate equivalent system and the multirate
system gets worse. This makes sense intuitively because the overall response of the
hybrid system must be matched by a lower-rate system. A general rule is that the
input signal frequencies should be no higher than the cutoff frequency of the slow-
est rate system.

Another issue is that high-frequency inputs can be completely missed by the lower-
rate system. For example, if a pulse is applied to a hybrid system with a continuous
subsystem followed by a discrete subsystem, the continuous subsystem will re-
spond to the pulse. However, a single-rate system can miss the pulse if it occurs be-
tween samples. Following this reasoning, the Kalman-Bertram method will not be a
good impulse response matching method.

The Kalman-Bertram method can also be thought of as a discretization method us-
ing the z-transform with zero-order hold. If you are interested in matching the fre-
quency response of the multirate and single-rate systems, The Kalman-Bertram
method is not recommended because the response at higher frequencies will not be
well matched.

For linear systems only, multirate lin results may be verified by comparing the step
response obtained from the multirate lin  results, using the step  function:

sys = lin(model,{keywords})
[t,y] = step(sys)

9.6.2 Linearizing Fixed-point Blocks

Fixed-point block linearization is performed the same, whether the model is single-
rate or multirate. The parameters are quantized, as Fixed-point requires, then the
linearization is performed in the usual manner. See Chapter 15.

9.6.3 References

1. Amit, N., “Optimal Control of Multirate Digital Control Systems,” Ph.D. thesis,
Stanford University, SUDAAR #523, July 1980.

2. Glasson, D.P., “Development and Application of Multirate Digital Control,” Con-
trol Systems Magazine, November 1983.
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9.7 Trim

trim finds the trimmed input, state and output values for equilibrium points of a
system. It is especially useful for finding a steady-state operating point without ac-
tually simulating the system. trim is also used to calculate the magnitude of the
constant inputs required to keep a system at its steady-state operating point. The
system can be continuous or discrete, and multirate and hybrid systems can be
trimmed with this function.

The system to be trimmed must have at least one state. A system with no external
inputs can be trimmed. trim accepts unconstrained and constrained inputs,
states, and outputs as initial conditions and computes a steady-state operating
point for a system. In order to obtain meaningful results, the number of constraints
should not exceed the number of unknowns.

trim returns the states (x), the inputs (u), and outputs (y), at a steady-state operat-
ing point. If you need to verify that the solution found is indeed a steady-state oper-
ating point, call the simout function with x , u values obtained from the trim
solution. The derivative vector xdot calculated by simout should match the deriva-
tive constraint vector specified for the trim problem. Alternatively, you can perform
a simulation using x for the initial conditions and u as constant inputs. The results
of this simulation should match y.

For linear systems, trim usually converges in one or two iterations. For nonlinear
systems, convergence to the equilibrium may take longer. You can control the total
number of iterations to be performed, as well as the tolerance criterion for conver-
gence.

Consider the following nonlinear dynamic system:

The trimmed operating point is defined as the state and input values for which
, where is the required derivative value at the steady-state operating

point.

For the case where = 0, the operating point is an equilibrium point, characterized
in simulation by no transients due to initial conditions.

When trim  is applied to a discrete system,  is defined as the pseudo-rate:

ẋ f x u,( )=
y g x u,( )=

ẋ ẋt= ẋt

ẋ t

ẋ t

ẋ t
x k 1+( ) x k( )–

T
----------------------------------------------=
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9.7.1 trim Syntax

The syntax of the trim  function is as follows:

[xt,ut,yt,yimpt] = trim (model,{xdt, xdt_float, u0, u_frz,
x0, x_frz, y0, y_frz, yimp0, dx, du, iter, trimtol})

model  is a required string specifying the model to be processed.

The following are optional inputs.

xdt State derivative vector at which the system is to be trimmed, of di-
mension nx by 1. Default = all 0.

xdt_float List of integers specifying the floating (unconstrained) derivatives.
The system will be trimmed at zero equilibrium by default. The con-
straints on derivatives corresponding to these will be removed from
the trim  equations to be solved. trim  will usually detect “free inte-
grators” and inform the user. In some cases, the trim solution may
improve if indices of these free integrators are included in
xdt_float. Default = null .

u0 Nominal input vector, of dimension nu by 1 or nu by 2. Default = all
0.

u_frz List of integers specifying inputs to be frozen. Default = null .

x0 Nominal initial state vector; defaults are taken from the System-
Build catalog.

x_frz List of integers specifying states to be frozen. Default = null .

y0 Nominal output vector.

y_frz List of integers specifying outputs to be frozen. Default = null .

yimp0 Nominal implicit output vector for systems with algebraic loops.

dx Real (default 0.001). State perturbation vector for linearization.

du Real (default 0.001). Input perturbation vector for linearization.

iter Integer. Number of trim  iterations. trim  will continue improving
the solution until either the tolerance criterion is satisfied (see
trimtol  below), or the maximum number of iterations specified
with iter  is exceeded.
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If u0 is not specified as an input, it is initialized to zero. If y0 is not specified, then
simout is used to compute it from x0 and u0. If x is not specified as an input, it is
initialized from the SystemBuild catalog values.

u_frz, x_frz , and y_frz designate components of the external input, state, and
output vectors that are to be held constant. y_frz can be used for trim problems
where operating point states and their derivatives are known but the inputs are un-
known. Constraining outputs is preferable to constraining states, because the map-
ping from states to outputs is often not known to the user (for example, in transfer
function blocks). Note, however, that for some overly constrained problems, it may
not be possible to satisfy y_frz exactly, because output values at the trim point
are constrained by .

The trim function uses the lin command to linearize a system. Therefore the nec-
essary initial conditions and inputs for the operating point must be specified with
the x0  and u0 keywords.

Once the trimmed state values are computed, they may be inserted as initial condi-
tions for a subsequent simulation or linearization. If the trimmed point is indeed a
steady-state operating point, the output will show no transients.

trimtol Real (default 100*eps ; eps =machine epsilon). Convergence crite-
rion for trim  iterations. Convergence is assumed when the Euclid-
ean norm of the constraint vector xdt (or [xdt; y] if some outputs
are frozen) is less than eps. In some cases, this value may be too
strict, and it may have to be relaxed.

xt Trimmed state vector

ut Trimmed input vector

yt Trimmed output vector

yimpt Trimmed implicit output vector

y g xt ut,( )=
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9.7.2 trim Algorithm

The trim function is designed to find the trimmed input and state values xt, ut,
such that the following constraints are satisfied:

yf represents the constrained (“frozen”) components of the output vector. To describe
the algorithm we will use a continuous nonlinear system:

and we wish to satisfy, at the steady-state operating point,

subject to xf, uf as specified by the user.

Linearization of the system and output equations yields:

If we set, at the operating point:

The result is:

The matrices A, B, C, D are found by linearizing the system with the lin command.
are obtained by deleting rows and columns from A, B, C, and D ac-

cording to floating derivatives and frozen x, u, and y values.

ẋ ẋ t=

y yf=

ẋ f x u,( )=

ẋt f x u,( )– 0=

yf gf x u,( )– 0=

x∂
∂f

x
f∂
u∂

----- u∆+∆ 0=

x∂
∂g

x
g∂
u∂

----- u∆+∆ 0=

EQ. 9-5

A
x∂

∂f
B,

u∂
∂f

C,
x∂

∂g
D,

u∂
∂g= = = =

Ã B̃

C̃ D̃

x∆
u∆

0= EQ. 9-6

Ã B̃ C̃ and D̃, , ,
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In order to construct an iterative Newton-Raphson root solving problem, we rewrite
Equations 9-5 and 9-6 as:

The iterations continue until convergence is achieved:

9.7.3 trim Behavior

Stability

When a system is unstable, it may still be possible to trim the system at an unstable
equilibrium point. However, this may not correspond to a steady-state operating
point. When simulated, a system will diverge from such trimmed points. To check
for stability, inspect the eigenvalues of the system, obtained by linearizing the sys-
tem at the trimmed operating point.

Free Integrators

The trim algorithm may have difficulty when trimming systems with free integra-
tors. Free integrators are dynamic states that do not contribute to the calculation of
state derivatives. In the presence of free integrators, it may or may not be possible to
trim a system exactly.

When trim detects a free integrator, it reports the index and name of the state asso-
ciated with the derivative, but does not try to remove the free integrator.

If the trim  iterations fail to converge, either:

■ Some constraints on Y can be removed.

■ The indices of free integrators reported by the TRIM algorithm can be included
in the list xdt_float .

Ã B̃

C̃ D̃

xi 1+ xi–

ui 1+ ui–

ẋt f x i ui–( )–

yf i gf xi ui,( )–
=

EQ. 9-7

xi 1+

ui 1+

xi

ui

≅
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Algebraic Loops and trim

Trimming a system with algebraic loops may require that you obtain trimmed val-
ues for the algebraic loop outputs. These outputs can be obtained by adding a new
term in the output list:

[xt, ut, yt, yimpt] = trim(model {xdt, xdt_float, u0, u_frz, x0,
x_frz, y0, y_frz, yimp0, dx, du, iter, trimtol, message})

model  is a string specifying the name of a SuperBlock in the SystemBuild editor.

The trimmed state and algebraic loop outputs can be inserted as simulation or lin-
earization initial conditions, for example:

y = sim(..., { x0=xt, yimp0=yimpt})

9.7.4 trim Examples

EXAMPLE 9-1: Simple Linear Model

To trim a simple linear model, load and analyze the F14 model Flat Model. This sys-
tem has eleven states, three inputs, and four outputs, and can copied to your work-
ing directory as follows:

copyfile "$SYSBLD/examples/f14/f14_2.cat"

Load the file. Using the following trim command, the number of unknowns is
eleven (only the states are solved for; inputs are frozen). The number of constraints
is 11, as seen from a simple row count in Equation 9-7 on page 9-15, and so the
trim problem is well-posed:

[xt,ut,yt]=trim("Flat Model",{u0=[2; 2; 2], u_frz=[1, 2, 3]})

The results of the trim  operation can be verified using the following commands:

t=[0:10]'; u=2*[ones(t), ones(t), ones(t)];
y=sim("Flat Model",t, u, {x0=xt})

Note that there are no transients in the output, and the above y matches the output
yt  obtained from trim .

yimp0 Nominal implicit output vector for the algebraic loop outputs.

yimpt Trimmed algebraic loop output vector.
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EXAMPLE 9-2:  Over-Constrained Simple Linear Model

The following trim command gives eleven unknowns (solving only for states; inputs
are frozen), and 11 + 4 = 15 constraints (four outputs are constrained); thus the
problem is over-constrained.

[xt,ut,yt]=trim("Flat Model", {u0=[2;2;2], u_frz=[1,2,3],
y0=[10;20;30;10], y_frz=[1,2,3,4]})

For this example, trim returns a message indicating the size of the error, which is
large because the problem as it was presented is over-constrained. The solution for
xt, ut will give a least-square solution but cannot attain zero error.

As an example of a nonlinear trim problem, load and analyze the Predator-Prey
model. Copy the model file to your local directory:

copyfile "$SYSBLD/examples/pred_prey/pred_prey.cat"

Load the file, then call the trim  function.

[xt,ut,yt]=trim("Predator_Prey",{u0=1, x0=[2;2], u_frz=1, iter=5})

The steady-state operating point can be verified by simulating the system with the
above xt  as initial conditions.

Experimenting with different initial conditions reveals that this system has two
equilibrium points at: xt = [0;0], [1;0.5] .



10

10-1

10 Classical Analysis

10.1 Classical Analysis Tools

This chapter describes the user interface to the SystemBuild SuperBlock Editor
analysis tools. These tools provide an easy-to-use graphical interface for analysis of
the current model using Xmath functions. A summary of the tools is as follows:

■ The Analyze tool provides a graphical interface to the analyze function. Press
the Help button on the dialog for information on using this tool.

■ The Simulate tool is a graphical interface to the sim function. Press the help
button on the dialog for information on using this tool.

This chapter focuses on the classical analysis tools, which are:

■ Time Response

■ Open-Loop Frequency Response

■ Point-to-Point Frequency Response

■ Root Locus

■ Parameter Root Locus

Most of these tools linearize the current SuperBlock. The SystemBuild lin function
performs classical linearization of continuous, discrete (either single rate or multi-
rate), or hybrid (mixed continuous and discrete). Procedure SuperBlocks referenced
from Condition blocks are linearized as algebraic. Dynamic blocks in such systems
are not taken into account; their linearization is assumed to be 0.
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Hybrid and multirate systems will automatically be linearized using the Multirate
Linearization method. The syntax of the lin function is explained in detail in the
online help.

10.2 Classical Analysis Tools Process

If the system contains a hierarchy of SuperBlocks, the analysis must be performed
with the top-level SuperBlock open in the SystemBuild Editor window.

■ To use the Time Response, Open-Loop Frequency Response, Point-to-Point Fre-
quency Response or Root Locus tools you must first select an input block and
an output block. To perform a multiple selection, select the input block, then
hold down the Control key and select the output block. When you open the
Tools menu you will see that the tools are enabled; select the desired tool.

■ To use the Parameter Root Locus Tool, do not select anything in the model; sim-
ply select Tools→Parameter Root Locus.

A dialog box is presented, asking for the appropriate parameters, as explained in the
subsections for each of the functions, below.

NOTE: Whenever you enter a new value in a dialog field you must press Return in
that field to ensure that the value is read.

When all the parameters are entered and accepted, the software proceeds as follows:

1. The system is copied to a reserved SuperBlock named _Analysis_System .†

This system is modified depending on the input and output blocks selected, and
whether the mode of analysis is open-loop or point-to-point. The modified Su-
perBlock _Analysis_System may be edited and used like any other Super-
Block and is displayed in the catalog listing of SuperBlocks. However, you
cannot use Analysis tools on _Analysis_System .

NOTE: Although the Tools menu functions alter the model by adding extra
inputs and outputs where required around the area of interest, the
analyzed portions remain in the diagram and the catalog. Thus,
although the area of interest may be single rate, if a subsystem with a
different rate is part of the original model, multirate linearization will
be invoked, and may give unexpected results. If this presents

† The _Analysis_System SuperBlock is intended for your use. For example,
you may choose to linearize the SuperBlock using the lin function, and then
use the A, B, C, and D matrices obtained from linearization for analysis in
Xmath.
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difficulties, copy the area of interest to a temporary SuperBlock and
edit it to remove the unwanted parts of the model before attempting
another analysis. Likewise, if the model has other dynamic blocks
that are not on the signal path of interest, these dynamics may
appear as unobservable and uncontrollable modes during the
analysis.

2. _Analysis_System  is analyzed.

3. _Analysis_System is linearized. The operating point is fixed by the initial
conditions entered in dynamic block dialog boxes and by the external input en-
tered in the analysis dialog box.

NOTE: The external input has the reserved name sb_uext. This name
should not be used by any user-defined Xmath variables, or they will
be overwritten.

4. Finally, the appropriate Xmath function is invoked. The function results will be
plotted. You can follow the progress of the function execution by checking for di-
agnostic or error messages in the Xmath Window.

10.3 Open-Loop Frequency Response

As soon as one or two blocks have been selected as the input and output blocks for
the open-loop system, the menu item for open-loop frequency response is enabled. If
you select that menu item, Tools→Open-Loop Frequency Response, the Frequency
Response dialog box appears, as shown in Figure 10-1 on page 10-4.

NOTE: The input block is the first block selected and the second block is the
output-block. If you select only one block, it block will be used for both
the input and output block.

The inputs area of at the top of the dialog box lists the input channels of the se-
lected input block. Correspondingly, the output area at the top of the dialog box
shows output channels of the selected output block. One channel each can be se-
lected for the open-loop system input and output. This will define a Single-Input/
Single-Output (SISO) system on which the selected frequency analysis is performed.

■ The Frequency MIN and Frequency MAX fields allow you to define the frequency range
for the resulting plot. Remember to press Return  every time you edit a value.

■ The Number of Domain Points field defines the number of frequency values at which
the plot is calculated. Remember to press Return  after editing this field.
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■ The Operating Points of SuperBlock Inputs region is a table listing the values of the ex-
ternal inputs with respect to which the linearization will be performed (default
values are zero). Use the edit fields to the right of the list to change the value.
Remember to press Return  after editing this field.

The Pattern option draws constant Mand N contours on the plot and Wrap limits the
phase to ± 180°. Refer to the Control Design User’s Guide for further details.

One of three frequency analyses can be performed: Bode , Nyquist , or Nichols . As soon
as one of the analysis types is selected in the dialog box, the reserved SuperBlock
_Analysis_System is created, containing a copy of the system. Then this system
is linearized and either the appropriate continuous or discrete Xmath function for
Bode, Nyquist or Nichols is invoked. A plot will appear with the desired analysis re-
sult.

FIGURE 10-1  Open-Loop Frequency Response Dialog Box
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Note that the Open-Loop Frequency Response analysis may be applied to compo-
nents of closed-loop systems as well. In the case of a closed-loop system the loop is
broken at the input channel that you specify in the Frequency Response dialog box.

For example, consider the system shown in Figure 10-2. Type the following to copy
this file to your local directory:

copyfile "$SYSBLD/examples/classical_example/classical.cat"

Load the file. To obtain the Bode plot of the open-loop Plant transfer function, first
select the input then the output blocks. In this case, we want to use the block la-
beled “Plant” as both the input and output, so select only that block. Next, select
Tools→Open-Loop Frequency Response.

The open-loop system that will be processed is available as SuperBlock
_Analysis_System ; an edited version of the Figure 10-2 system is shown in
Figure 10-3 on page 10-6.

Note that in Figure 10-3 the original loop is broken at the input to the plant and re-
placed by an external input; therefore the _Analysis_System is effectively the
plant as we wanted to see it.

See Figure 10-1 on page 10-4 for the Open Loop Frequency Analysis dialog box that
appears next. In the dialog box Click Bode . See Figure 10-4 on page 10-6 for the re-
sulting plot.

FIGURE 10-2  Open-Loop System “classical 1” Before Editing
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FIGURE 10-3  Open-loop System for Tools Menu Processing

FIGURE 10-4  Open Loop Bode Plot (typical)
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10.4 Time Response

As soon as one or two blocks have been selected as the input and output blocks for
the open-loop system, the menu item for time response is enabled. If you select
Tools→Time Response, the Step or Impulse Time Response dialog box appears, as
shown in Figure 10-5.

NOTE: The block considered as the input-block is the first block selected and the
second block as the output-block. If you select only one block, that block
will be used for both the input and output block.

The inputs and outputs areas of the dialog box operate the same as for Open Loop
Frequency Response, as explained in Section 10.3. Remember to press Return each
time you change a value.

FIGURE 10-5  Time Response Dialog Box
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The Time MAX field defines the final time for the analysis. The Number of Points field dis-
plays the number of points in time that the response is calculated. The Operating
Points of SuperBlock Inputs field allows you to input a value for each input to the model
and override the default value of 0. These are the values of the external inputs with
respect to which the linearization will be performed.

Either step or impulse response can be selected, resulting in the modified system to
be linearized and the Xmath function for step or impulse to be invoked. A plot
should appear with the desired analysis result.

For example, consider the system shown in Figure 10-2 on page 10-5. Again, select-
ing the Plant block as input and output then selecting Tools→Time Response, then
press the Step, the modified system would be the same as in Figure 10-8 and the re-
sulting step response would be as shown in Figure 10-6.

FIGURE 10-6 Step Response Plot
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10.5 Point-to-Point Frequency Response

A basic SISO feedback loop typically includes three exogenous signals†. Figure 10-2
on page 10-5 incorporates only one of these three signals, namely the command (or
reference) input. The remaining two exogenous signals, external disturbance and
sensor noise signals, enter the loop as shown in Figure 10-7 (this diagram is for il-
lustrative purposes only). You can copy this model to your local directory with the
following Xmath command:

copyfile "$SYSBLD/examples/classical_example/classical.cat"

Load the file. The SuperBlock is named classical 2 .

In detailed or complicated block diagrams, it may not be convenient to include these
extra exogenous inputs from the outset. Nevertheless, you may need to examine the
transfer function(s) between various points of the feedback loop, without the loop
being broken.

For example, you may need to examine the transfer function associated with the
Disturbance signal (see Input #1 in Figure 10-7). To illustrate how this can be done,
consider the system in Figure 10-2 again. Suppose that the disturbance signal to
the plant is not already built into the model, as is the case in Figure 10-2, and you

† See Chapter 3 of Feedback Control Theory, by John C. Doyle, Bruce A.
Francis, and Allen R. Tannenbaum, MacMillan Publishing Company, New
York, 1992.

FIGURE 10-7  Analysis of the Open-Loop Example
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are interested in the transfer function from the disturbance signal at the plant input
to the output of the feedback loop.

To accomplish this task, proceed as follows:

1. Select the block where the external input is to be injected. In our example the
input is to be injected at the input channel of the Plant  block.

2. Select the block from which the output signal is to be taken; in this example,
this is the same block so there is no need to select another block.

3. Select Tools→Point to Point Frequency Response.

4. A dialog box appears, with input and output areas that list the input and output
channels of the selected block or blocks, allowing you to select one channel
each for the closed-loop system input and output. (In the example, the block is
SISO and therefore the channel selection is automatic).

This selection defines a system wherein all original connections are left intact except
that a signal is injected through an additional summation block, at the specified in-
put port. Zero step inputs are attached to all the other external inputs, and the out-
put is measured at the analysis output; see Figure 10-8. This SuperBlock is named
classical 4, and is available in the file you loaded earlier, classical.cat .

FIGURE 10-8  Closed-loop Example for Analysis
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The fields on the dialog box and the three types of frequency analyses operate the
same as was explained in the previous section for Open-Loop Frequency Response.
If a Bode plot were requested, the plot shown in Figure 10-9 would result.

10.6 Root Locus

Given an open-loop, SISO system, G(s), the Root Locus option of the Tools menu cal-
culates and plots the roots of the closed-loop system that is composed of G(s) and a
variable, feedback gain K. This amounts to the calculation of roots of the equation
1+KG(s) = 0 for a range of values of K. This range of values is typically specified by
the user. The open-loop system is defined by specifying its input and output, as dis-
cussed in the previous sections.

As soon as one or two blocks have been selected as the input and output blocks for
the open-loop system, the menu item for root locus is enabled. If you select
Tools→Root Locus, the Root Locus dialog box appears, as shown in Figure 10-10.

NOTE: The block considered as the input-block is the first block selected and the
second block as the output-block. If you select only one block, that block
will be used for both the input and output block.

FIGURE 10-9 Bode Plot of the Point-to-Point Example
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The Inputs area of the dialog box lists the input channels of the selected input block
and the output channels show the corresponding selected output block. One chan-
nel each can be selected for the open-loop system input and output. This will define
a SISO system on which the root locus analysis is performed.

When PATTERN is set to YES, lines of constant damping and constant natural fre-
quency will be drawn on the root locus plot.

NOTE: The Root Locus function invoked in this way is the standard Xmath
interactive root locus function; you may need to rearrange the screen
windows to gain access to the Xmath Root Locus dialog box, from which
you can change the interactive gain value. Refer to the online help or the
Xmath Control Design Module for further details.

For example, consider the system from Figure 10-2 on page 10-5 again. If the Plant
Block were selected as input and output, then the system shown in Figure 10-3
would be created and linearized, and the resulting root locus plot would be as
shown in Figure 10-11, subject to changes you may make in the Interactive Root Lo-
cus dialog box.

FIGURE 10-10  Root Locus Dialog Box
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NOTE: If your model has other dynamics that are not in the signal path of

interest, these dynamics will appear in the root locus plot as
unobservable-uncontrollable modes. They do not affect the root locus of
interest, except in the case of a discrete system with uncontrollable or
unobservable dynamics where these dynamics are of a different rate,
necessitating multirate calculations that would influence the root locus
calculations.

10.7 Parameter Root Locus

The Parameter Root Locus functionality differs from the Root Locus . When the
user defines a SISO system, G(s), the Root Locus option automatically creates a
closed-loop system as described in Section 10.6. This assumes that you are inter-
ested in using a feedback gain, K, to create a closed-loop system from G(s). In many
situations, you will have already closed the loop and are only interested in the roots
of the specified system when internal parameters, which have to be defined as
%Variables, are changed. Thus, there is no need for closing any loops, and the pa-
rameters are internal. The Parameter Root Locus option provides this capability;
with it you to obtain root loci of nonlinear systems.

FIGURE 10-11  Root Locus Plot
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An example of a nonlinear system is shown in Figure 10-12 on page 10-14, where
the inner_loop, outer_loop, and Channel 1 Feedback gains are parameterized.

To copy this model to your local directory, type:

copyfile "$SYSBLD/examples/classical_example/prl.cat"

Load the file, open ‘example1’ in the Editor, and select Tools→Parameter Root Lo-
cus.

NOTE: The Parameter Root Locus option is enabled when there are no blocks
selected.

The dialog shown in Figure 10-14 on page 10-15 appears. It lists all scalar %Vari-
ables referenced in any block residing in the currently displayed SuperBlock and
the hierarchy of SuperBlocks under it. One %Variable can be selected as well as a
range for varying the parameter and the number of points.

The root locus is computed by varying the %Variable from MIN to MAXwith a step-
size of (MAX-MIN)/NPTSand at each value plotting the real and imaginary parts of
the eigenvalues of the linearized system. The plot is thus parameterized in the
%Variable. The eigenvalues corresponding to the minimum and maximum parame-
ter value are plotted in a different color. The %Variable is restored to its original
value at the end of the analysis.

FIGURE 10-12 example1



SystemBuild User’s Guide Classical Analysis

10-15

10
FIGURE 10-13  Parameter Root Locus Dialog Box

FIGURE 10-14  Parameter Root Locus Plot of the example1 Diagram
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Multirate, Nonlinear System Root Locus

To illustrate some of the hidden steps that are executed for an analysis, let us con-
sider a multirate, nonlinear system. To create the system, copy the following file to
your local working directory:

copyfile "$SYSBLD/examples/classical_example/mws_demo.cat"

Load the file and edit the SuperBlock named BUILT_MODEL (see Figure 10-15).

1. Select the feedforward compensator , then select Edit→Make SuperBlock.

2. Go to the Catalog Browser and select the new SuperBlock (_makesb). Select
Tools → Transform, and in the Transform SuperBlock dialog, make the type
discrete, and specify a sample period of 0.01,

3. In the Editor, select the Gain = 100 (ID 7) block as input, then control-click to
select the system dynamics block (ID 4) as output.

4. Select Tools→Root Locus. Change the X Min to .5. the X Max to 1.1, the Y min to -.5,
the Y Max to .5 and the Gain to 0.7, then click Done.

The root locus that is obtained, shown in Figure 10-16 on page 10-17, corresponds
to an equivalent single rate linear system with sample interval T = 0.01 and gain =
0.7. Therefore, the stability properties of the root locus must be interpreted as for a
discrete system. See Section 9.6 on page 9-7 for more multirate linearization.

FIGURE 10-15  Built_Model SuperBlock
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The operating point has an important effect on the linearization of nonlinear sys-
tems. The operating point is defined by the external input, entered in the Tools men
forms, and by the state initial conditions. See Section 11.2 on page 11-10 for fur-
ther explanation of operating points. The effect of the operating point on a linear
analysis can be easily illustrated.

1. Load the original model $SYSBLD/examples/mws_examples/mws_demo.cat
open the system BUILT_MODEL.

2. Select the Gain = 100 (ID 7) block as input, then control-click to select the sys-
tem dynamics block (ID 4) as output.

3. Select Tools→Root Locus.

4. Change the root locations interactively. Take note of where the roots are when
the gain is 100.

FIGURE 10-16  Root Locus Plot of the Built Model
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5. Make a SuperBlock out of the four blocks connected between Feedforward
Compensator block to the System Dynamics (IDs 11, 99, 2, and 4). Select
File→Update.

The new SuperBlock’s name is the default name, _makesb. To rename _makesb,
switch back to the Catalog Browser, expand the BUILT_MODEL subhierarchy in
the left pane, and select _makesb SuperBlock; select Edit→Rename and name
the new SuperBlock, for example, “newsb”.

NOTE: If you do not rename the SuperBlock, Root Locus will fail.

6. Open newsb. In the Editor, do a root locus analysis with the same input and
output blocks (IDs and 4), and launch the Root Locus tool. Note that this time
there is an Opoint field. Set the gain to 100 and compare the values with those
you noted in step 4.

Note that now when the Gain = 100, the roots are not in the same place as the pre-
vious root locus plot. The reason is that in newsb, the extra blocks in the system are
removed so that only the path from Feedforward Compensator to system dynam-
ics remains. Therefore, the calculation of the operating point done by the function
opoint()  is different.

In the first case, the external input is specified by the step signal but in the second
case it is defined by the external input entered in the Root Locus dialog box, with a
default of zero. The nonlinear single variable interpolation block is therefore linear-
ized at a different point, or, in other words, the equivalent gain for the block is dif-
ferent. Consequently, the open-loop gain of the system is different, affecting the
closed-loop pole locations on the root locus plot.
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11 Advanced Simulation

This chapter discusses:

■ Explicit vs. implicit models

■ Operating points

■ Integration algorithms

■ State events

11.1 Explicit vs. Implicit Models

Continuous simulation models can be implicit or explicit. Implicit blocks can be
found on the Implicit palette. The majority of SystemBuild blocks are explicit, which
means that the state derivative can be written as an explicit function of the state.

A model is implicit if it contains implicit blocks and/or algebraic loops.

■ If a model contains algebraic loops, but no implicit blocks, it can be simulated
using both implicit and explicit integration algorithms. The analyzer will how-
ever issue a warning message indicating that the simulation result is not reli-
able when explicit algorithms are used.

■ Models that contain implicit blocks can only be simulated using implicit inte-
gration algorithms.
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11.1.1 Explicit Models

Explicit models are defined by an underlying Ordinary Differential Equation (ODE)
where the state derivative is explicitly computed from the state:

EQ. 11-1

Note that the external input is not included as one of the right hand side argu-
ments. This generally accepted formalism simplifies without loss of generality. In-
deed, the dependence on the external input is really a time dependence defined by
linear interpolation of the values in the input matrix as a function of time.

11.1.2 Implicit Models

Implicit models are defined by a residual (which is a function of time), the state, and
the state derivatives:

EQ. 11-2

The solution is defined by setting to zero and solving for x(t) and . This type
of equation is generally referred to as a Differential-Algebraic Equation (DAE), since
it may imply non-dynamic or algebraic relations between elements of the state vec-
tor. Note that DAEs are inherently associated with constraints, because they require
the residual to be zero. Also, any ODE can be reformulated as a DAE by defining the
residual as the difference between the left and right hand sides of the ODE equa-
tion. Conversely, DAEs cannot generally be reformulated as ODEs.

In order to be able to solve the DAE, some additional assumptions have to be made.
For example, the Stiff System Solver (DASSL) assumes nonsingularity of the Jaco-
bian, a condition which is often hard to guarantee and verify. Despite these prob-
lems, implicit integrators are important because they are the only ones that can
handle algebraic loops and implicit blocks correctly.

Implicit Model Constraints

Constraints can be used to prevent the solution from drifting away from any pre-
defined manifold known for the solution. They can be imposed with implicit UCBs,
constraint blocks and/or algebraic loops (Example 14-1 on page 14-7 illustrates
this).

ẋ t( ) f e x t( ) t,( )=

δ t( ) f i ẋ t( ) x t( ) t, ,( )=

δ t( ) ẋ t( )
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SystemBuild differentiates between two types of constraints: required and auxiliary.

■ Required constraints are defined as an arbitrary set of constraints that are nec-
essary to solve the DAE, such that each variable required to solve the problem
has a corresponding constraint. Any additional constraints are called auxiliary.

■ Auxiliary constraints make a problem overdetermined since, generally speaking,
they add more equations than there are variables. The notion of solvability goes
mathematically beyond reasoning based on numbers of equations versus con-
straints. (For practicality, SystemBuild ignores these issues, since they are usu-
ally irrelevant and would add an unjustifiable degree of complexity.)

We distinguish between required and auxiliary constraints because auxiliary con-
straints make the Jacobian non-square, requiring different state update equations
than those based on matrix inversion. The biggest difference is, that if auxiliary con-
straints are used, the δ vector is partitioned into two segments, which we refer to
(required constraints) and  (auxiliary constraints).

Implicit States and Implicit Outputs

The simulation state is described by explicit states, implicit states, and implicit outputs:

The three components have the following meaning:

Note that this state vector is an augmentation of the implicit and explicit state vec-
tors with implicit outputs which are discussed next. It is important to realize that in
order to save the state of the simulation, the implicit outputs must be saved as well.

x_i Implicit states, introduced by implicit UCBs or implicit variable blocks.

x_e Explicit states, introduced by any other dynamic blocks.

y_i Implicit outputs, introduced by algebraic loops.

δr
δa

x

xi

xe

yi

=
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Implicit Outputs

Implicit outputs are block outputs in an algebraic loop selected by the SystemBuild
analyzer as the starting point for direct evaluation of the loop equations. Implicit
outputs are different from other outputs in the sense that the diagram cannot be
evaluated without them. They are different from states in the sense that they can
get instantly overwritten during the diagram evaluation. How this is done depends
on the block sorting by the analyzer, and is generally unpredictable. In spite of this
nondeterministic behavior, implicit integration algorithms can compute the numeri-
cally correct solution.

Initialization

Implicit model initialization is a little more complicated than initialization for explicit
models. For Implicit models, both states and state derivatives must be initialized. In
order for the simulator to compute the operating point at the start of the simulation,
you must specify whether the search will be done over the states or the state deriva-
tives. Both the ImplicitUserCode Block and the ImplicitVariable block have a combo
box where this search mode can be set. It is important to realize that if the diagram
contains no state derivatives, the search is done over the states, and vice versa. The
operating point computation can be bypassed using initmode = 4 . For more de-
tails, see Section 14.2.4 on page 14-8.

11.1.3 Implicit Model Examples

We will illustrate the effect of implicit outputs and give examples of some of the
available implicit blocks.

EXAMPLE 11-1: Algebraic Loop

A model containing an algebraic loop is shown in Figure 11-1 on page 11-5. The ef-
fect of the feedback loop containing the gain block is twofold: (1) an implicit output
is created after the summation block, and (2) the first input to the summer evalu-
ates to zero.
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11When evaluated, this diagram solves the equation x**2 = 4, resulting in the answer
2 or -2. We can obtain an answer of -2 (only) with the following commands:

t = [0:10]';
[,y] = sim(“gallop”, t, {ialg=6});
y?

Either ialg=6 (DASSL) or ialg=9 (ODAS), will produce the desired result. Note,
feeding the output of the gain block into the DotProduct block, avoids singularity of
the Jacobian, making it possible for O/DASSL to solve the equation without prob-
lems.

FIGURE 11-1 Algebraic Loop Solver of x**2 = 4
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EXAMPLE 11-2: The Implicit Output Block

Disadvantages of solving the equation x**2 = 4 using the model in Figure 11-1 on
page 11-5 are:

■ The analyzer arbitrarily decides the location of the implicit output. You cannot
influence the analyzer’s decision.

■ In order to initialize the implicit output you must pass yimp0 to the sim com-
mand. In more complicated situations, where there are several implicit outputs,
you would need to know the composition of yimp0, which also depends on the
analyzer.

The Implicit Output Block replaces the implicit output with an implicit state, allow-
ing you to enter the initial condition in its block dialog. This change is shown in
Figure 11-2.

Because the model now contains an implicit block, it can only be simulated with im-
plicit integration algorithms.

FIGURE 11-2 Solving x**2 = 4 using an Implicit Output Block
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EXAMPLE 11-3: The Implicit Variable and Constraint Blocks

The most appropriate way of solving x**2 = 4 is to use a combination of an Implicit-
Variable block and a Constraint block. The ImplicitVariable block has an output vec-
tor consisting of two segments, (1) the implicit state vector, and (2) the implicit state
derivative vector.

For the ImplicitVariable block, the Initialize Mode field determines whether the search
for initial values is done over the states (frozen states) or over the derivatives (frozen
derivatives). In this case, the states must be frozen in order to simulate the diagram.
The initial value cannot be s zero, since this will lead to a singular problem. Any
nonzero value will work.

For the ImplicitConstraint block, the Constraint Type field specifies whether the con-
straint type is Required or Auxiliary. Since the diagram has an equal number of im-
plicit variables and constraints, we can assume the constraint in this diagram is
required.

FIGURE 11-3 Solving x**2 = 4 using Implicit Variable and Constraint Blocks
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EXAMPLE 11-4: An Exact PID Controller

A more useful example is the use of the ImplicitVariable and Constraint blocks to
simulate an exact PID controller (Figure 11-4).

For the state derivative output of the ImplicitVariable block to represent the deriva-
tive of the input, the constraint is imposed so that its state output is equal to the ex-
ternal input. The command used to simulate this system and plot the output is:

t = [0:10000]'/1500;
[,y] = sim("imppid", t, sin(t.^3), {ialg=6});
plot(t, y)

Figure 11-5 on page 11-9 compares this output with the output of the PID Control-
ler block on the dynamic palette using the default parameters.

Note that the comparison is done over frequencies far beyond where the derivative
approximation of the (explicit) PID block is valid. The PID block performs much bet-
ter if the default parameter tau = 0.1 is replaced with 0.01 instead.

FIGURE 11-4 An Exact PID Controller
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EXAMPLE 11-5: The Inverted Pendulum

For this example we refer forward to Chapter 14, where an inverted pendulum ex-
ample is used to illustrate ImplicitUserCode block capabilities. This example can
also be simulated using ImplicitVariable and Constraint blocks, so that a UCB is not
required. An interesting aspect of that example is that it can be simulated under a
variety of conditions, among which are the cases of one or two auxiliary constraints.
The implicit block version of the inverted pendulum example can be found in $SYS-
BLD/examples/pend_imp_no_iucb . Load the catalog and run the MathScript
found in that directory.

FIGURE 11-5 Comparison of Exact vs. Approximate PID Controllers.
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11.2 Operating Points

The operating point for each subsystem must be calculated at the beginning of every
simulation, for all linearizations, and for all simout invocations. The objective of an
operating point calculation is to determine consistent values of all states, state de-
rivatives, block outputs and implicit algebraic loop variables. This section discusses
the methods for finding the operating point.

11.2.1 Continuous Subsystem

The continuous operating point is found by evaluating all continuous block outputs,
based upon the system initial states and inputs. If the system contains algebraic
loops or implicit states (via the Implicit UserCode Block), the operating point is
found by first applying a Newton-Raphson root solver. Then the other continuous
block outputs are computed based on the algebraic loop outputs, implicit state val-
ues, external input values, and initial state values. Because the root solver finds a
steady-state value for the algebraic loop outputs, initial transients in simulation due
to an incorrect operating point will not occur.

If algebraic loop initial conditions are specified with the yimp0 option, the operating
point computation for the algebraic loops will utilize the yimp0 values as initial con-
ditions for the Newton-Raphson solver.†

11.2.2 Discrete Subsystems

Several levels of initialization are available for discrete subsystems, which you may
select using the initmode keyword. By default, initialization is performed at the
initmode = 3  level.

The lowest level, corresponding to initmode = 0 , simply sets all block output val-
ues for each subsystem to .

At initmode = 1 , after all outputs are set to , outputs are computed for discrete
subsystems that do not have enable or trigger flags. The computations are based on
the initial states and inputs.

At initmode = 2 , after the two lower levels of initialization described above are per-
formed, outputs are computed for discrete subsystems that are enabled or triggered
and “active” (because their enabling or triggering signals evaluate True). The compu-
tations are based on the initial states and inputs.

† Note that operating point computations for implicit states as well as
algebraic loops are performed only for continuous subsystems.

ε–

ε–
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At initmode = 3 , the initialization is the same as initmode = 2 , except that there
is no sample and hold between subsystems.

At initmode=4 , disables the operating point computation performed at the begin-
ning of the simulation. Note that with initmode=4 , consistent initial conditions
have to be supplied for algebraic loop variables (if any), using the keyword yimp0 . If
this is not done, the implicit variables may have incorrect values at initialization
time.

The order in which subsystems are executed is determined by their relative priori-
ties. Subsystems with shorter sample intervals are executed before subsystems with
longer sample intervals.

The initialization procedure may fail in the event that a high priority subsystem is
dependent on the output of a low priority subsystem. In some cases, the problem
can be avoided by setting initmode = 0 , which may result in a different initial sub-
system execution order, because the simulation scheduler considers other at-
tributes that affect timing (initial time skew), which the initialization procedure does
not. In extreme situations, you may need to modify or redesign your model to be in-
sensitive to the bounds of values communicated between subsystems.

Note that code generated using AutoCode does not contain initialization procedures,
such as those in the simulator. As a result, generated code behavior is similar to the
case where initmode = 0 .

CAUTION: Algebraic loops in discrete systems should be avoided.

If a discrete subsystem contains algebraic loops, a computational delay occur be-
cause some block outputs will be used in computations before they are calculated
during each time interval. This computational delay will represent a pseudo-dyn-
amic which may produce non-steady transients in the simulation results.

11.3 Inserting Initial Conditions

The sim , simout , and lin functions allow initial conditions to be set for dynamic
blocks residing in the analyzed system, overriding the initial conditions defined in
the individual block forms of the dynamic blocks. This allows you to determine
quickly the effect of the initial operating point on a subsequent simulation or linear-
ization.

The operating point can be changed by supplying x0 , xd0 , and yimp0 values as op-
tional arguments to the sim , simout , or lin functions. These keywords insert ini-
tial dynamic state values (x0 ) initial state derivatives for implicit UserCode blocks
(xd0 ) and initial algebraic loop output values (yimp0 ).
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If any of the initial condition options are set, the simulation data bus is loaded with
the user-furnished vector. This action only initializes the run-time tables for the
current execution of sim , simout, or lin . It does not overwrite the initial condi-
tions that are stored on a block-by-block basis in the SystemBuild catalog. The cat-
alog values can be changed only by editing the block diagram.

For the syntax and method of operation of the sim , simout, and lin initial condi-
tion features, see the online help.

States associated with the Padé approximation of continuous delay blocks cannot
be accessed by the x0 keyword under sim . These states are initialized to zero at the
start of a sim or lin , unless the sim is being resumed, when the Padé states revert
to the value they had at the end of the last simulation.

The simulator’s x0 initial condition option does not allow initialization of memory
states. These include State Transition Diagram (STD) states, and DataStore initial
conditions. These initial conditions are initialized using values stored in the System-
Build catalog, except when a sim is resumed, in which case the memory states re-
vert to the values they had at the end of the last sim . The analyze function only
lists the states that sim insertion can access, and does not include the memory
states.

Via the block parameter dialog boxes, SystemBuild allows you to specify initial out-
puts for the transfer function blocks, NumDen, PoleZero, and ComplexPoleZero. Us-
ing the internal state-space representations of these blocks, SystemBuild assigns
appropriate initial conditions in these blocks so as to produce the desired initial
outputs. However, this mapping is not necessarily unique and is not visible to the
user, and therefore initialization of these states should be used with caution.

Also, to be consistent with the continuous case, SystemBuild initializes discrete in-
tegrator blocks at the integrator output point, rather than at the discrete delay out-
put. Thus, as shown in Figure 11-6, if the initial condition x0 is defined in the block
parameter dialog, it will be applied at the output of the integrator. By contrast, the
sim x0  option initializes the integrator’s state, .x̂

αZ +β

FIGURE 11-6  1/s Substitution in Discrete Integrator

x̂ xu T
z 1–
--------------
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11.4 Use of sim, lin, simout for Implicit UCBs

In the block dialog box of Implicit UCBs, there is a field that allows the definition of
either states or derivatives as initial conditions. The interpretation of the sim ,
lin , or simout arguments x0 and xd0 for state and derivative initial conditions are
dependent on the dialog box definition.

SystemBuild’s operating point solver will compute the correct initial conditions for x
or before a sim , lin , or simout , such that the implicit equations are satisfied.
However, there may be cases in which the operating point is singular.

When the operating point is singular, the user must provide these initial conditions.
The simout function has a special feature that facilitates this: when simout() is used
with initmode = 4:

[x,xdot,y]=simout("model",{x0=x0_init, xd0=xd0_init,
u0=u0_init, initmode=4})

then the operating point computation is bypassed and the xdot vector contains not
the derivatives, but the residuals  in its corresponding entries.

You can use this feature to write algorithms that compute the correct initial condi-
tions x0, xd0, or u0 iteratively.

11.5 Matrix Blocks in the Simulator

While the matrix blocks carry out well-defined matrix-theoretic functions on their
inputs, there may be a question as to what algorithm(s) they employ and what error
bounds they should be expected to obey. The Constant and MatrixTranpose block
are extremely simple and introduce no error. The ScalarGain, MatrixMultiply, Left-
Multiply, and RightMultiply are implemented using sequential scalar multiplication
(ScalarGain) or repeated dot product (the rest), and may introduce some error as a
consequence of the floating-point or fixed-point multiplications being carried out.
(See Section 15.1.4 on page 15-7.)

Dialog Definition
sim(), lin(), simout() argument

x0 xd0

states sim  initial condition initial condition for operating
point solver

derivatives initial condition for operating
point solver

sim  initial condition

ẋ

δ f x0 xd0 u0,,( )=
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This leaves us with the MatrixInverse, MatrixLeftDivide, and MatrixRightDivide
blocks which compute 1/A, or solve AX=B or XA=B for the unknown X. These blocks
involve complicated algorithms which may produce a large relative error, depending
upon the input. In Sim these blocks are implemented using the Gaussian elimina-
tion algorithm since this algorithm’s behavior is well-known and definitive state-
ments can be made about how much error the solution X or the inverse 1/A will
contain (thanks to the reciprocal conditioning number, which is generated by the
standard LINPACK implementation of Gaussian elimination). The simulator will halt
in a MatrixInverse, MatLeftDivide, or MatRightDivide if the reciprocal condition
number goes exactly to zero; this indicates it is impossible to invert or divide by the
matrix in a meaningful manner.

11.6 Sim Integration Algorithms

Dynamic models created in SystemBuild can be broadly categorized as follows:

■ Continuous

■ Discrete

■ Hybrid (i.e., a combination of continuous and discrete subsystems)

The procedure of simulating the SystemBuild model, or obtaining a sequence of so-
lutions to the system equations given the user-defined initial conditions and input
vector, is fairly straightforward for discrete systems. Starting from the given initial
conditions the discrete state equations are iterated until the specified final time.

Finding a numerical solution for continuous and hybrid systems, on the other hand,
requires a proper method of approximation. The purpose of an “integration algo-
rithm” or differential equation solver is to calculate an accurate approximation to
the exact solution of the differential equation. Then the solution is “marched” for-
ward from a starting time and a given set of initial conditions.

Since all continuous integration algorithms are inherently approximations, there
are a number of important points to consider in selecting a proper method: compu-
tational efficiency, truncation and round-off errors, accuracy and reliability of the
solution, and stability of the integration algorithm. Here we discuss these issues
and the advantages and disadvantages of each method included in the ISI repertoire
of integration algorithms. Hints and recommendations for choosing suitable meth-
ods for various types of models are also provided.
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These five terms are used in the following descriptions:

Integration methods may be divided into four classes: One-step, multi fixed-step,
variable-step, and stiff system solvers.

11.6.1 Comparing Integration Algorithms

The following list enumerates the supported Integration Algorithms. The numbers
correspond to the selection indices used in Xmath and SystemBuild to specify an al-
gorithm; the abbreviations in parentheses are also accepted by SystemBuild.

1. Euler’s method (euler)

2. Second-Order Runge-Kutta (RK2)

3. Fourth-Order Runge-Kutta (RK4)

4. Fixed-Step Kutta-Merson (FKM)

5. Variable-Step Kutta-Merson (VKM)

6. Differential-Algebraic Stiff System Solver (DASSL)

7. Variable-Step Adams - Bashforth - Moulton (ABM)

8. QuickSim (QSIM)

9. Over-determined Differential-Algebraic Stiff System Solver (ODAS)

10. Gear’s method (GEAR)

The default integration algorithm is 5 (Variable Kutta-Merson). The algorithm may
be set globally using the command:

setsbdefault,{ialg=algnumber}

ialgnumber  is taken from the list above.

T Current Time

DT Time Step

ODE Ordinary Differential Equation

DAE Differential Algebraic Equation

ODAE Overdetermined Differential Algebraic Equation
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You can also determine the current default number using the command:

SHOWSBDEFAULT

To set the integration algorithm for a given simulation run, use the Simulation dia-
log box in the SystemBuild Analysis Menu or the keyword in the sim function call:

y = sim(model,t,u,{ialg = algnumber})

11.6.2 Overview of the Algorithms

SystemBuild currently provides nine different integration algorithms. For numeri-
cally well-conditioned and non-stiff problems almost any of the algorithms can be
expected to yield reliable answers, although the execution times will vary.

The process of “integrating” a system model is conceptually based on discretizing
the differential equations that represent the model. That is, is replaced
by a difference equation approximating the underlying continuous differential equa-
tion up to a certain order. The continuous variables x and t are replaced by their
discrete equivalents xn and tn, while is substituted by . Literally implementing
this procedure yields Euler's method.

Euler Integration Method

Euler integration is an explicit, first-order method with one function evaluation per
step:

Note that the stepsize, h, is taken from the time vector supplied by the user.

This method is equivalent to approximating the area under the solution curve with a
series of rectangles, as shown below.

ẋ f x t,( )=

ẋ ∆x
∆ t
-------

xn 1+ xn h f xn tn,( )+= where h tn 1+ tn–=

FIGURE 11-7  Forward Euler Integration
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Euler's method is computationally inexpensive, but in practical applications it has a
major drawback. As seen from the equation, this method corresponds to a simple
linear extrapolation with a local truncation error of O(h2). Therefore, h must be
made very small to obtain reasonable accuracy. Unfortunately, reducing the step-
size increases the effect of round-off errors and compromises the computational ac-
curacy and speed.

Second Order Runge-Kutta (Modified Euler) Method

This method requires two function evaluations per step, using the following equa-
tions:

The second order Runge-Kutta method improves on the Euler method by fitting
trapezoids under the solution curve instead of rectangles, as seen below. The local
truncation error is O(h3).

k1 hf xn tn,( )=

k2 hf xn k1 tn h+,+( )=

xn 1+ xn

k1 k2+

2
---------------------+=

EQ. 11-3

FIGURE 11-8  Second order Runge-Kutta Integration

ttntn-1 tn+1
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Fourth Order Runge-Kutta Method:

The fourth order Runge-Kutta integration is an explicit method with four function
evaluations per step:

EQ. 11-4

The solution is computed as:

The fourth order Runge-Kutta method has a truncation error of O(h5). This is a suit-
able method when not much is known about the nature of the problem or the solu-
tion. Although this algorithm has proven reliable for many types of problems and is
widely used, computationally it is not among the most efficient methods, because it
does not have any stepsize control or order adjustments.

Fixed-Step Kutta-Merson Method

The fixed-step Kutta-Merson method improves on the fourth order Runge-Kutta
method by adding a fifth evaluation step. This method is more accurate than the
fourth order Runge-Kutta algorithm with a slight trade-off in computational speed.

k1 hf xn tn,( )=

k2 hf xn

k1

2
----- tn

h
2
---+,+ 

 =

k3 hf xn

k2

2
----- tn

h
2
---+,+ 

 =

k4 hf xn k3 tn h+,+( )=

xn 1+ xn

k1 2k2 k4+ +

6
---------------------------------------+=
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 It is implemented with the following equations:

Variable-Step Kutta-Merson Method

As shown in reference 3 on page 11-39, in the fixed Kutta-Merson method shown
above, the difference between terms and xn+1 yields an accurate estimate of the lo-
cal truncation error.

The Variable-Step Kutta-Merson method uses this information to adjust the integra-
tion step. The equations are identical to the fixed Kutta-Merson method with addi-
tional computations to decide on the stepsize.

The local error is computed as:

The maximum stepsize is limited by the time increment tn+1 - tn or dtmax . Because
of its accuracy, reliability, moderately efficient speed, and its successful perfor-
mance in a wide range of problems, Variable-Step Kutta-Merson method has been
chosen as the default integration algorithm in SystemBuild.

Stiff System Solver (DASSL)

Two types of problems are usually difficult or impossible to solve with the conven-
tional integration algorithms:

■ Stiff systems, which have both very fast and very slow dynamics,

■ Differential algebraic equations (DAEs).

k1 hf xn tn,( )=

k2 hf xn
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3
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h
3
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SystemBuild has an implicit stiff system solver, DASSL, that can handle both types
of problems. In stiff systems, conventional algorithms will not be able to capture
both the fast and the slow dynamics present in the same system.

DAEs occur when the SystemBuild model results in an implicit system; a system
with algebraic loops or implicit UserCode Blocks. The simulator analyzer detects al-
gebraic loops and informs you of their existence with the message There are al-
gebraic loops in the system. If you attempt to solve such a system with one
of the explicit methods, a delay is automatically added to the model to resolve the al-
gebraic loop. (When such a system is analyzed, SystemBuild provides a message in-
dicating the location of the delay to be inserted.) This may not always be desirable
because you do not have control over where the delay is inserted, and if the loop
gain is greater than unity, the system becomes unstable.

The Implicit Stiff System Solver applies a Newton-Raphson solver at each time step,
and attempts to find an operating point consistent with the user-supplied initial
conditions. This process will succeed in most instances. If an operating point cannot
be found, however, this will mean that either the problem, or the given initial condi-
tions, are ill-posed (physically unrealizable), or the true solution cannot be reached
from the current estimate of its value. DASSL will present one of the following mes-
sages when this occurs:

DASSL-- AT TIME (=...) AND STEPSIZE H (=...) THE ERROR TEST FAILED
REPEATEDLY OR WITH ABS(H) = HMIN.

DASSL-- AT TIME (=...) AND STEPSIZE H (=...) THE CORRECTOR FAILED
TO CONVERGE REPEATEDLY OR WITH ABS(H) = HMIN.

DASSL-- AT TIME (=...) AND STEPSIZE H (=...) THE ITERATION MATRIX
IS SINGULAR.

In such cases, the SystemBuild model and the initial conditions should be inspected
carefully to locate inconsistencies or errors in the model.

DAEs usually arise in systems of equations resulting from dynamic analysis of me-
chanical systems. Generally, these types of models are a mixture of nonlinear alge-
braic and differential equations and they are numerically stiff. A system of DAEs
has the form:

g ẋ x t, ,( ) 0;= ẋ t0( ) ẋ0=

x t0( ) x0=
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The equations are numerically solved as follows:

1. The last converged value of the solution is used as an initial guess at the
current time point tn+1.

2. is approximated by a backward differentiation formula of order up to 5. The
approximation is substituted for every occurrence of to yield a nonlinear alge-
braic equation.

The nonlinear algebraic equation is solved by a Newton-Raphson iteration
method. This method computes a Jacobian of the form

where the constant c is determined by the backward differentiation formula.
The Newton-Raphson iteration equation

is solved at t = tn+1 using the Jacobian calculated above, approximated by the
backward differentiation formula, and initial guess computed from a predictor
polynomial that fits the past solution curve. If the Jacobian is not invertible, the
algorithm will fail.

The algorithm in SystemBuild is based on the DASSL Stiff System Solver developed
by Linda Petzold at Sandia National Laboratories. Section 7.10 on page 7-18 dis-
cusses the types of systems for which the implicit stiff system solver is suitable. Also
see Computing the Maximum Integration Stepsize in Variable-Step Integration Algo-
rithms for a discussion of stepsize computations.

Variable-Step Adams-Bashforth-Moulton Method

The Adams-Moulton method is implemented with a variable-step, variable-order al-
gorithm (note that “variable-step” refers to the time step, while “variable-order” per-
tains to the order of the polynomial that is fitted to the solution curve of the
differential equation). Since it generally requires only two function evaluations per
time step (one for predictor, one for corrector), the execution time is usually faster
than other algorithms (except Euler's method, which requires only one function
evaluation).

The Variable-Step Adams-Moulton method is especially suitable for smoother prob-
lems with continuous higher derivatives, since it uses the information from the

xn

ẋ
ẋ

J
x∂

∂g c
ẋ∂

∂g
+=

xn
k 1+

xn
k

J xn
k( )

1–
g ẋn

k
xn

k
un, ,( )–=
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higher derivatives. The Adams-Bashforth explicit method is used as a predictor, and
the Adams-Moulton implicit method is used as the corrector step:

The Adams-Bashforth Predictor step is computed as:

f is the differential equation evaluated at step n:

The Adams-Moulton Corrector step is computed as:

In the above equation is the differential equation computed at step n+1 using
from the predictor step. As before, h = tn+1 - tn. The solution is started at the

beginning of the simulation with a second order Runge-Kutta algorithm. The local
truncation error of this method is O(h5). A discussion of how the stepsize is adjusted
in the Variable-Step Adams-Moulton algorithm is presented in Section 11.7.

QuickSim Method

Explicit fixed-step integration algorithms are inefficient for numerically solving stiff
differential equations because the stability of the method depends on the smallest
time constant. QuickSim is an explicit, A-stable, fixed-step integration algorithm
that is more efficient and has good accuracy for linear or nearly linear systems.

Given: with initial condition x(tk)=xk, a Taylor series expansion
for f(x,u) around x(tk), u(tk) is obtained:

EQ. 11-5

xn 1+ xn

h 55fn 59fn 1– 37fn 2– 9 f n 3––+ +( )
24

-------------------------------------------------------------------------------------------------------------+=

f n ẋn f x n tn,( )= =

xn 1+ xn

h 9fn 1+ 19fn 5 f n 1– f n 2–+ + +( )
24

----------------------------------------------------------------------------------------------------+=

f n 1+

xn 1+

ẋ f x t( ) u t( ),( )=

ẋ f x u,( ) f x t k( ) u tk( ),( )
x∂

∂f

x tk( ) u tk( ),
x x tk( )–( )+≈=

u∂
∂f

x tk( ) u tk( ),
u u tk( )–( ) h.o.t.++
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Defining:

we obtain:

EQ. 11-6

and solving for xk+1:

EQ. 11-7

The method is A-stable, with the same stability properties as trapezoidal integration.

To implement the algorithm, a secant approximation of  is used:

EQ. 11-8

Substituting, we obtain:

EQ. 11-9

The final form of the algorithm is:

EQ. 11-10

where I1, I2 are the two integrals above. These integrals are precomputed at the be-
ginning of the simulation.

A
∂ f
∂x
------

x tk( ) u tk( ),
B, ∂ f

∂u
------

x tk( ) u tk( ),
= =

xk 1+ x tk 1+( )=

xk x tk( )=

h tk 1+ tk–=

∆u t( ) u t( ) u tk( )–=

ẋk 1+ Ax k 1+ f x k uk,( ) B∆u tk 1+( )+ += Axk–

xk 1+ xk e
A h τ–( )

f x k uk,( ) B∆u τ( )+[ ]dτ
0

h

∫+=

∆u

∆u t( )
uk 1+ uk–

h
------------------------------ t mk t≡=

xk 1+ xk eA h τ–( ) f x k uk,( )dτ eA h τ–( )

0

h

∫+ Bmk τdτ
0

h

∫+=

xk 1+ xk I 1f x k uk,( ) I 2mk+ +=
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Local Truncation Error

The method has a local truncation error that is O(h2). Let the actual solution at time
tk be x(tk) and the computed solution xk. Assume that x(tk)=xk and write expressions
for x(tk+1) and xk+1:

EQ. 11-11

and

so:

Over-determined Differential Algebraic System Solver (ODASSL)

ODASSL (Overdetermined Differential Algebraic System Solver) is useful in solving
DAEs or ODEs with constraints (problems with more equations than state vari-
ables). All continuous dynamic systems in SystemBuild are in ODE form. In order to
incorporate DAEs into SystemBuild, an Implicit UserCode block (UCB) has been cre-
ated. The Implicit UCB (Section 14.2.2 on page 14-2) also allows constraints to be
defined.

The equations of motion for multi-body dynamics often result in systems of differen-
tial-algebraic equations. These DAEs may sometimes possess additional constraints
that the physical system must satisfy. In some cases, these equations can be re-
duced to explicit form with algebraic manipulations. However, reduction by analyti-
cal or numerical methods may require strong simplifications or serious analytical
and numerical difficulties. For such problems, formulation and numerical solution
of the equations of motion in the DAE or overdetermined DAE form offers the most
convenient approach.

x tk 1+( ) x tk( ) ẋ tk( )h+=

xk f x k uk,( )h+

xk 1+ xk eA h t–( ) f x k uk,( ) Bmτ+[ ]dτ
0

h

∫+=

xk I A h τ–( ) A 2 h τ–( )2

2!
------------------------------- …+ + + f xk uk,( ) Bmτ+[ ]dτ

0

h

∫+=

xk f x k uk,( )h
1
2
--- Ah2 h.o . t .+ + +=

xk x tk 1+( )– O h2( )=
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Consider the implicit differential equation (IDE):

The system has index 0 if and only if is not singular. Note that this means that
the equation can be (locally) transformed into an explicit form with-
out any differentiations. If at least one differentiation of the IDE is required to trans-
form the DAE into explicit form, then the DAE is said to have index 1. In general, an
index k DAE requires k differentiations to transform it into explicit form.

In order for SystemBuild to solve a DAE with DASSL or ODASSL, the DAE must
have an index of 0 or 1. This is because these algorithms are not designed to handle
systems of index greater than 1. In particular, DASSL and ODASSL will fail if the Ja-
cobian is singular:

For a DAE defined using the implicit UCB, when a simulation is started, the initial
conditions and must be consistent. They must satisfy the following
equation, otherwise the algorithms may fail when the integration process is started.

EQ. 11-12

In exactly the same way, any constraint equations that may be part of the implicit
UCB should also be satisfied by the initial conditions:

EQ. 11-13

When using ODASSL, SystemBuild first calculates the rank of the matrix . If
there are derivatives that do not explicitly appear in the equations, then the equa-
tions that are associated with the variables are de-emphasized in the local error cal-
culations. This is usually encountered when Lagrange multipliers are used to
formulate the equations fo motion for a dynamic system. For an example of this pro-
cedure, see Figure 11-10.

The technique used by ODASSL in incorporating the constraints into the DAE is nu-
merically equivalent to the Gear Stabilization technique. If a DAE is integrated with-
out its constraints, the solution tends to “drift away” from the correct answer. The
constraints act as corrections that stabilize the solution.

f ẋ x t, ,( ) 0=

ẋ∂
∂f

ẋ f 2 x t,( )=

J
x∂

∂f c
ẋ∂

∂f
+=

ẋ t0( ) x t0( )

f ẋ t0( ) x t0( ) u t0( ),,( ) 0=

g ẋ t0( ) x t0( ) u t0( ),,( ) 0=

ẋ∂
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The most common type of DAEs or ODAEs appear in multibody system dynamics,
such as vehicles, satellites, and robots. Typically, the DAEs obtained from the
Lagrangian formulation yield the following equations of motion for holonomic sys-
tems:

where:

Differentiating these equations shows that the DAE in Equation 11-9 has an index
of 3. In order to successfully solve this system in SystemBuild, an index 1 formula-
tion must be obtained (higher index formulations may fail during integration).

Since the constraint gp(p) is a function of positions, it can be differentiated to obtain
constraints on velocity and acceleration:

EQ. 11-14

p represents generalized position variables

v represents generalized velocity variables

M is the inertia matrix

f is the function of Coriolis, Centrifugal, and gravitational forces and external
inputs, u

gp represents position constraints

λ represents the generalized constraint forces, also called Lagrange multipliers

ṗ v=

M p( )v f p v u, ,( )
p∂

∂ gp p( )T λ–=

0 gp p( )=

FIGURE 11-9

gv p v,( ) ġp p( ) 0= =

ga p v v̇, ,( ) ġv p v,( ) 0= =
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Thus, three types of formulations are possible with this example:

1. Unconstrained DAE formulations:

a. Index 3 formulation:

There are np+nv+nl states, and the same number of equations.

b. Index 2 formulation:

Instead of 0=gp(p), use constraint 0=gv(p,v).

c. Index 1 formulation:

Instead of  use constraint

2. Index 2 formulation, with one constraint:

DAEs:

Constraints:

3. Index 1 formulation with two constraints:

DAEs

Constraints:

The most reliable numerical results are usually obtained from the index-1 con-
strained formulation (formula 3) above.

0 ṗ v–=

0 M p( ) v̇ f p v u, ,( )–
p∂

∂ gp p( )T λ+=

0 gp p( )=

0 gp p( )= 0 ga p v v̇, ,( )=

0 M p( ) v̇ f p v u, ,( )–
p∂

∂ gp p( )T λ+=

0 ṗ v–=

0 gv p v,( )=

0 gp p( )=

0 M p( ) v̇ f p v u, ,( )–
p∂

∂ gp p( )T λ+=

0 ṗ v–=

0 ga p v v̇, ,( )=

0 gv p v,( )=

0 gp p( )=
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EXAMPLE 11-6: Pendulum Example

The above formulations will be demonstrated by the simple pendulum example il-
lustrated below:

The pendulum is connected to ground via a pivot. It is assumed to have mass m
concentrated at the endpoint with link l having zero mass. An input torque u excites
the motion, applied at the pivot point. The equation of motion, using the generalized
coordinate θ, is:

which is an ODE. For purposes of illustration, the equations of motion will be de-
rived using the coordinates x and y. The position constraint, (the pendulum oscil-
lates on a circle of radius l).

EQ. 11-15

where:

EQ. 11-16

The above set of equations constitutes an index-3 unconstrained formulation.

g

y

θ
u

m

x

l

FIGURE 11-10  Pendulum Example Diagram
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For index-2 and index-1 formulations, we use the velocity constraint,

EQ. 11-17

and the acceleration constraint,

EQ. 11-18

in place of the position constraint above.

Thus, an index-1, two-constraint formulation of this problem (as in case 3 above)
would be as follows:

Then:

This example is coded as an implicit UCB in the SystemBuild examples directory. To
run the example, go to Xmath and copy the files from the examples directory to your
current directory:

copyfile "$SYSBLD/examples/pendulum_imp/*"

In the Xmath command area type:

execute file = "pend_imp.ms"

This will load and simulate the implicit UCB. The script prompts you interactively.

gv ġp x ẋ y ẏ+ 0= = =

ga ġv x ẋ̇ ẋ2 y ẏ̇ ẏ2+ + + 0= = =

x

y

ẋ

ẏ

λ

x1

x2

x3

x4

x5

=

(External input was taken to
be zero in this example)

Let

ẋ1 x3– 0=

ẋ2 x4– 0=

mẋ3 x1x5+ 0=

x1ẋ3 x3
2 x2ẋ4 x4

2
+ + + 0=

mẋ4 x2x5 mg+ + 0=

D.A.

(with algebraic level
constraints)

x1x3 x2x4+ 0=

1
2
--- x1

2
x2

2
l
2

–+( ) 0=

Velocity level constraint:

Position level constraint:
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Gear’s Method

Most Backward Difference Formulations (BDF), for example, DASSL and ODASSL,
are based on Gear’s method. The original algorithm, DFASUB, was developed at the
University of Illinois at Urbana-Champaign. Gear’s method is a variable-step, vari-
able-order algorithm and uses a polynomial-based predictor followed by a Newton-
based correction at every step (just like (O)DASSL). It was designed to handle a mix-
ture of ordinary differential equations, nonlinear equations, and linear equations.

In Integrated Systems’ implementation of Gear’s method, the dedicated linear equa-
tion handling in the original implementation has been omitted; linear equations are
simply handled by the general nonlinear equation solver. In addition, a least-
squares extension to the Newton corrector has been implemented to make the algo-
rithm suitable for overdetermined systems. Gear’s method is a good choice for im-
plicit systems, and is a good alternative where ODASSL fails.

The main differences between Gear’s method and (O)DASSL are summarized herey:

■ (O)DASSL bases its polynomial order choice on stability, whereas Gear’s uses
the largest possible step size as a   criterion to determine the order.

■ (O)DASSL uses internal logic to determine when re-evaluation of the Jacobian is
required, whereas Gear’s simply re-evaluates the Jacobian at every time step.
Since computation of the Jacobian is a CPU-intensive operation, (O)DASSL runs
several times faster than Gear’s; conversely, Gear’s Jacobian is more accurate.

■ ODASSL imposes any auxiliary constraints (that is, any equations that make
the system overdetermined) in an exact manner. Gear’s imposes them with a
weighting function that is implicitly determined by the least-squares enhance-
ment of the Newton step.

To make the associated residuals arbitrarily small, multiply them with a suit-
ably large constant. In cases where the residuals are defined by a Constraint
block, this can be done by feeding them through a Gain block   first.

References for Gear’s Method

R.L. Brown, C.W. Gear — "Documentation for DFASUB - A Program for the Solution of Si-
multaneous Implicit Differential and Nonlinear Equations", University of Illinois
at Urbana-Champaign, report UIUCDCS-R-73-575, July 1973.

C.W. Gear — "Simultaneous Numerical Solutions of Differential-Algebraic Equations",
IEEE Transactions on Circuit Theory, CT-18, January 1971.

C.W. Gear — "Numerical Initial Value Problems in Ordinary Differential Equations",
Prentice Hall, 1971.
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11.7 Absolute and Relative Tolerances

The Variable-Step Kutta-Merson, Stiff System Solver, and Variable-Step Adams-
Moulton methods all make use of user-definable absolute and relative tolerances to
determine whether the order and/or the stepsize needs to change. Each of these
methods has a different technique for local error computation. In the following de-
scription of these computations, we first define some terminology:

All dynamic blocks have two fields to specify multiplication factors to scale the sim
command tolerance parameters abstol and reltol . These multiplication factors
are stored in row vectors and have the default value of one. They are used only by
variable step integration algorithms, and can help improve the speed and/or accu-
racy of the simulation results.

11.7.1 Variable-Step Kutta-Merson Method

The Variable-Step Kutta-Merson algorithm uses the following test:

then the solution for x is good (see the Fixed-Step Kutta-Merson Method on page 11-
18 for definition of ). Otherwise, the stepsize h is decreased and the Kutta-Merson
equations are recalculated.

xi Approximate solution for the states at the ith step.

ERR Approximate local error in the state x.

RELTOL Relative tolerance (default = 10-3). The reltol variable is specified in
the sim  function.

ABSTOL Absolute tolerance (default = , where ε is the machine epsilon). The
abstol  variable is specified as a sim  keyword.

h The time step. Just as with the fixed-step methods, this value is orig-
inally taken from the time vector supplied by the user, but each vari-
able-step integration algorithm will modify h as part of its process.

The Euclidean norm (2-norm) of a vector (except as indicated other-
wise).

ε

.

ERR
x xn 1+–

5
---------------------------=

If ERR RELTOL x× or ERR ABSTOL≤≤

x
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11.7.2 Stiff System Solvers (DASSL and ODASSL)

The Stiff System Solver uses a backward differentiation formula to estimate ERR.
The test to check if the solution is accurate is as follows:

First, let

where N is the number of equations. Then, if the solution is good. The de-
fault norm routine in DASSL is one that finds the Root Mean Square (RMS) norm of
the vector:

Alternatively, the Infinity norm of the vector may be used:

The Infinity norm is a more conservative bound for the error computation, and
choosing this norm will yield more accurate answers. The RMS norm is less accu-
rate, but the algorithm usually executes faster with this norm. The sim keyword
dnorm controls this error computation. dnorm=1 (RMS norm) and dnorm=2 (Infinity
norm).

It is advisable to use a smaller reltol value with the RMS norm to get more accu-
rate answers, since convergence accuracy is not the same as with the Infinity norm.
Note that stiff systems are more expensive to solve in terms of computation than
other systems. In DASSL the expense is more strongly dependent on the tolerance
than it is with other algorithms.

11.7.3 Variable-Step Adams-Bashforth-Moulton Method

In the Variable-Step Adams-Moulton algorithm, the stepsize is chosen so that the lo-
cal truncation error ERR satisfies,

where:

v i( ) ERR i( )
RELTOL x i( ) ABSTOL+×
---------------------------------------------------------------------------------------- i=1 … N, ,( )=

v 1≤

X 2 vi
2

i 1=

n

∑=

v ∞
max v i( )

i
=

ERR hn 1+ TOL<

TOL RELTOL x× ABSTOL.+=
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In particular, the local truncation error ERR is computed as:

The index k is the order of the method and n is the time step index. Terms gk+1, 1

and gk,1 are coefficients related to past stepsizes, and fk+1 is a quantity related to a
modified divided difference approximation of the solution derivative at the current
and past times.

With this estimate of the error ERR, the next stepsize is chosen so
that:

11.7.4 Computing the Maximum Integration Stepsize in Variable-Step Integration Algorithms

At the end of each integration step, the simulation scheduler decides the stepsize for
the next step. It uses five factors to compute the maximum stepsize the variable-
step integrators can take, or the actual stepsize the fixed-step integrators will take:

1. The user-defined time vector defines the times when the output is posted. The
stepsize can be no larger than the difference between the current time and the
next output posting time, as modified by dtout , below

2. dtout , a sim keyword, gives control over the spacing of posted outputs, and
thus over the integration stepsize. It may override factor 1, because the integra-
tion stepsize can be no greater than the difference between the current time and
the next dtout  posting time.

3. dtmax , also a keyword for sim  , places an absolute upper limit on the stepsize.

4. The sampling of discrete subsystems may affect the length of an integration
step. At a given time, the scheduler checks for any upcoming discrete events.
The continuous integration stepsize is limited by the difference between the cur-
rent time and the next discrete event.

5. If there is a state event within any given integration step, the stepsize is reduced
to the time instant of the state event.

6. Factors 1 through 5 will define a maximum possible stepsize. The variable-step-
size integrators may internally choose a smaller stepsize in order to satisfy error
requirements. fixed-stepsize integrators will use exactly the stepsize dictated by
items 1 through 4, above.

ERR hn gk 1 1,+ gk 1,–( )φk 1+ n( )=

hn 1+ rhn=

r
TOL

2 ERR×
------------------------- 

 
1

k 1+
---------------

=



Advanced Simulation SystemBuild User’s Guide

11-34

11.8 Sample Simulation

In this example, a simple model is simulated with each of the integration algorithms
to compare the execution times and the errors in the solutions. The effect of relative
tolerance reltol on the variable-step algorithms (Variable Kutta-Merson, Stiff Sys-
tem Solver and Adams-Moulton) is demonstrated. Finally, the performance of the
Stiff System Solver is tested with the two different error norm computations.

For evaluating and comparing the speed and accuracy of the integration algorithms
in SystemBuild, a mass-spring system was modeled with viscous damping propor-
tional to the position multiplied by the velocity and with a nonlinear cubic spring:

Reference [7] gives the exact solution for the response of the above system as:

The SystemBuild block diagram model for this system is shown in Figure 11-11 on
page 11-35. You can copy the data file for this model to your local directory with the
following Xmath command.

copyfile "$SYSBLD/examples/ialgs/cubic_spring*"

The remainder of this example compares the various errors exhibited by each inte-
gration algorithm, where the error was computed by taking the difference of the ex-

ẋ̇ 3x ẋ x3+ + 0 x0; 5– ẋ t0( ); 0.= = =

x t( ) 2

t 1
x0
-----+

t 1
x0
-----+ 

  2 1
x0
----- 

  2
+

---------------------------------------------------

 
 
 
 
 

=
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FIGURE 11-11 Block Diagram of the Cubic Spring Model
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act value and the value yielded by the algorithm of interest. The position response
for this system is shown in Figure 11-12 on page 11-36

The integration error for the Euler algorithm is shown in Figure 11-13 on
page 11-36. This algorithm displays the largest errors, with a deviation of up to 10%
of the maximum amplitude of the response.

FIGURE 11-13  Errors in Euler Integration



SystemBuild User’s Guide Advanced Simulation

11-37

11

Figures 11-14 and 11-15 present the errors of the remaining six algorithms. In
Figure 11-15 on page 11-38, the amount of error displayed by the Stiff System
Solver and the Variable-Step Adams-Moulton method are the same order of magni-
tude as the Second Order Runge-Kutta method.

This example is presented strictly for the purpose of testing the algorithms; these er-
ror magnitudes are not significant for most problems. The most accurate method in
SystemBuild for the example shown is the Variable-Step Kutta-Merson method. (In
general, the Variable-Step Kutta-Merson method is the most accurate among the
built-in methods in SystemBuild). All fourth order Runge-Kutta based methods
yield excellent performance, as seen in Figure 11-14. Note the vertical scale; the er-
ror magnitudes are less than one millionth of the response magnitude.

When reltol was varied, it had no observable effect for the Variable-Step Kutta-
Merson method for this specific example. Figure 11-16 presents the effect of chang-
ing the relative tolerance reltol for Variable-Step Adams-Moulton. Figure 11-17
and Figure 11-18 show the effect of reltol for Variable-Step Kutta-Merson, and for
the Stiff System Solver.

For this example, changing certain options can improve accuracy without adding
too much computational burden. Depending on the type of problem, the perfor-
mance of the Stiff System Solver can be improved by changing the norm computa-

FIGURE 11-14  Errors in Fixed and Variable-Step Integration Algorithms (1)
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tion method. Figure 11-19 shows the effect of this change where simulations using
the RMS norm (dnorm =1) and infinity norm (dnorm =2) are plotted. These results
may differ slightly, depending on the platform SystemBuild is running on. In partic-
ular, the machine epsilon of your specific platform will effect some of these results.
(The machine epsilon for these simulations was ε = 2.2204E-16 .)

FIGURE 11-15  Errors in Fixed and Variable-Step Integration Algorithms (2)
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In conclusion, it should be pointed out that choosing the right integration method is
as much an art as it is a science. As in everything else, experience is the best guide
in selecting an integration algorithm.
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FIGURE 11-16  reltol and Variable-Step Adams-Moulton Method

FIGURE 11-17  reltol and Variable-Step Kutta-Merson; All Curves Superimposed
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11.9 State Events

A difficulty in modeling of continuous systems occurs when a system shows any of a
class of local discontinuities (state events†), which may interfere with the operation
of continuous integration methods.

To solve this problem, a state-event modeling capability is provided in SystemBuild
through the ZeroCrossing block, resettable Integrator blocks, and continuous User-
Code blocks (UCBs). The purpose of the feature is to handle discontinuities in state
values and switching between system equations. Applications for state events arise
in modeling mechanical systems with impact, stiction/friction, and nonlinear sys-
tems with variable structures; i.e., potential changes in either the model or the con-
troller.

State events are also used to simulate interrupts associated with Asynchronous
Trigger SuperBlocks (see page 5-14).

The objective of state event modeling is to circumvent attempts by the numerical in-
tegration code to integrate over drastic changes (i.e., instantaneous changes of state
values in system equations) in the system. Usually such attempts will cause the lo-
cal error criterion of the integration algorithm to fail, or have convergence difficul-
ties.

These problems are most acute when the time the event occurs is not known a pri-
ori. Observe that if state events are handled properly, they do not disturb the nu-
merical integration of the continuous system because they are handled outside of
the integrators; in the following discussions this process is referred to as restarting
the integrators. After the state event, the operating point of the continuous system
is recomputed and the integration can proceed without convergence problems.

SystemBuild provides two ways of dealing with state events: ZeroCrossing blocks
and Continuous UserCode blocks (UCBs). If at all possible, we recommend that you
try to use ZeroCrossing blocks rather than writing your own UCB to deal with State
Events, since ZeroCrossing blocks provide a simpler, consistent and optimized solu-
tion to this problem.

† In some literature such events are called switch events.
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11.9.1 ZeroCrossing Block

The ZeroCrossing block is located on the User Programmed palette. A signal con-
nected to the ZeroCrossing block will be monitored for a sign change†, and the exact
instant of the sign change is located‡. Once the zero crossing is found, the output of
this block changes from 0 to 1 or from 1 to 0, depending on its previous state (i.e.
y(k+1) = 1 - y(k) for the k’th zero crossing). The block output is always initialized to
0 at the beginning of a simulation.

Thus, given a sinusoid signal as input, the block’s output will change as shown in
Figure 11-20:

createsuperblock "sinewave",{inputs=0,outputs=2}
createblock "sinwave",{id=1}
createblock "zerocrossing",{id=2}
createconnection 1,2;createconnection 1,0;createconnection 2,0
t = [0:.01:1]';
y = sim("sinewave",t,{extend,graph});

† In this block, the sign change is detected only on a change from > 0 to < 0 or
from < 0 to > 0, not on a change to or from 0.

‡ A time point will be generated at the zero-crossing time.

FIGURE 11-20  Zero Crossings of a Sine Wave
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Note that the simulator will always restart (and the operating point will be recom-
puted) when a zero crossing is found. Therefore, the output of the Zero Crossing
Block can be used to detect discontinuities and trigger various events elsewhere in
the model (e.g. resetting a resettable integrator to avoid integrating over a disconti-
nuity.) Note that Asynchronous Trigger SuperBlocks whose trigger signal is the out-
put of the ZeroCrossing will execute (and post outputs) before the simulation time is
restarted.

In order to offer more flexibility, the Resettable Integrator block has been designed
to reset either on a single edge (a transition from zero or negative to positive) or a
double-edge (either a transition from zero or negative to positive, or a transition
from positive to zero or negative). See the Integrator block in the online help.

The interface of the Zero Crossing block is simple: the number of input signals mon-
itored is the same as the number of output signals for selection of zero crossings.

11.9.2 Continuous UserCode Blocks

The dialog boxes for both explicit and implicit UCBs include a field for entering the
number of state event signals. The mechanism for finding the exact time of an event
is as follows:

Associated with each UCB is a user template for defining state events. This code de-
fines two things: the signal to monitor for occurrence of a state event, and the ac-
tions to be executed at the instant of the event.

Usually, the state event problem is formulated as follows:

EQ. 11-19

EQ. 11-20

EQ. 11-21

where Equation 11-19 and Equation 11-20 describe the system, and
Equation 11-21 defines a set of monitoring functions whose roots (or zero crossings)
signal a possible state event.

During simulation, the equations defined by Equation 11-21 should be contained in
the UCB’s monit section and are monitored at every integration step. A test is done
for a sign change of z = h(x,u,t). If a sign change occurred in the last step, the inte-
gration code executes a root solver to find the instant of zero crossing.

ẋ f x u t, ,( )=

y g x u t, ,( )=

z h x u t, ,( )=
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Once the time of the event is found, the integrators will take a step just up to the
time of the event, and then the event section code described in the template will be
executed. This code can reset state values, change model parameters, and/or switch
between system equations (see the examples for a demonstration of how this can be
done). After the event is executed, the operating point is recomputed with the inte-
grators restarted; i.e., continued from the reset values.

The UCB template divides the user-written program into six sections, each invoked
using its own flag. The sections are:

■ init  (perform program initialization activities)

■ state  (perform state updates)

■ output  (perform output updates)

■ monit  (check for state events)

■ event  (perform state event activities)

■ last  (perform program termination activities)

Thus, two flags are provided to be used for state-event simulations: monit and
event . In the monit section, the monitor function (i.e., the zero-crossing signal)
should be calculated.

The UCB is called with monit=1 during every integration time step. The event sec-
tion defines the actions to be taken when a state event is found. When SystemBuild
finds a zero crossing in one of the monitor signals, it makes a call to the UCB with
event= i, where i is the ith monitor signal that has signaled a zero crossing. Note that
the i count starts from 1, not from 0. In the event section, states can be reset to
new values, or rpar and ipar values can be set for other purposes, depending on
the application.

To help with building UCBs for state events, the following template files are pro-
vided:

$SYSBLD/src/usr01.c
$SYSBLD/src/iusr01.c

NOTE: iusr01.c is intended for implicit UCBs only. See Section 14.2.2 on
page 14-2 for further details.

■ In all state-event applications, the activation of the event depends on the precise
location of a zero-crossing of the signal being monitored. For this reason, the
zero-crossing detection fails if the signal becomes degenerate (i.e. stays at zero
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at more than one integration step). Care must be taken to avoid this situation;
i.e., you must make sure that the location of the zero-crossing of the signal is
unique.

■ It is possible to have multiple zero-crossing signals and corresponding events in
a model. Each event in the state events blocks will be handled independently of
others, even when the zero crossing locations coincide. The new operating point
is computed after all events have been detected for that time step.

■ When the Zero Crossing block is used to simulate a model, every zero crossing
is considered to be an event. Only in UCBs are the monitor and event sections
separate.

■ Time-based events can easily be handled using the output time feature of the
AlgebraicExpression block (i.e., y = T ), and feeding the signal (Tevent - T) into a
ZeroCrossing block.

■ The set of equations simulated by SystemBuild can be switched during a simu-
lation using a ZeroCrossing block in conjunction with some additional logic
(e.g., the DataPathSwitch block). Also, within a UCB, user-written code in the
event section may activate a flag called by user code in the states section
when determining which state update equations to use.

Restrictions and Limitations

1. State events are only defined for continuous UCBs.

2. No zero crossings can be detected at time zero.

3. For any given signal, only odd zero-crossings can be detected within an integra-
tion step. This means that when an integration algorithm takes a forward time
step, if the signal changes signs twice, the zero crossings will not be detected.

4. Degenerate zeros (i.e., successive zero values) will not be detected as zero cross-
ings. Degenerate zeros will result in a failure of the simulation.

5. Fixed step integrators will not calculate the zero crossing instant as accurately
as the variable step algorithms.

6. Quicksim (ialg = 8) will not detect any zero crossings, because this algorithm
calculates its solution based on a linearization at t  = 0.

11.9.3 Example

This example uses a bouncing ball model with a ZeroCrossing block.
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EXAMPLE 11-7: Impact of a Bouncing Ball

In this example, a bouncing ball is modeled. Copy the example data to your local di-
rectory:

copyfile "$SYSBLD/examples/bouncer_example/bouncingball.dat"

The ZeroCrossing block detects the moment when the ball hits the ground. Note
that the height of the ball needs to become slightly negative in order to locate a zero
crossing. However, the height is reset to zero by the resettable integrator as soon as
the impact instant is found, and the simulation is backed up to the impact time. Lo-
cating the zero crossing in this way allows the use of larger steps in the time vector.

The conservation of the impulse is modeled by resetting the velocity integrator to the
last velocity (multiplied by a restitution coefficient.

When the kinetic energy of the ball becomes too small, the bouncing frequency in-
creases, and the zero crossing becomes degenerate. To represent this, a boundary
layer on the position of the ball has been added to the model; see Figure 11-21.

In Figure 11-22, the system was simulated with:

FIGURE 11-21  Bouncing Ball Model
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t = [0:.05:10]';
y = sim("Bouncing Ball with Zero Crossing", t, {graph, extend})

Note that by using the extend keyword option in sim , we obtain the exact instants
of impact (zero crossings) in the output PDM y. This allows a very accurate plot of
the bouncing ball simulation.

FIGURE 11-22  Plot of Bouncing Ball Example
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12 BlockScript

This chapter focuses on the structure and syntax of the BlockScript language. For
an explanation of the BlockScript block, see the online help.

12.1 Introduction

BlockScript provides a generalized programming capability for defining SystemBuild
blocks for simulation and code generation. The BlockScript block extends the con-
cepts used in SystemBuild’s AlgebraicExpression and LogicalExpression blocks.

A BlockScript program allows you to define block inputs, outputs, and parameters,
specify their datatypes and dimensions, and write the update equations that pro-
cess the inputs and parameters to produce the outputs.

12.1.1 The Block Paradigm

This section explains the Integrated Systems block paradigm (Figure 12-1) and
shows how the structure of the BlockScript program supports it.

FIGURE 12-1 Block Structure Paradigm (Continuous Shown)
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The block update equations are programmed to accept:

■ Block inputs

■ States (information from the previous cycle)

■ Parameters (information from the block dialog box)

■ Environment information, such as time and certain universal and platform-de-
pendent constants

The block update equations produce two types of outputs:

■ Block outputs

■ State derivatives (Continuous) or Next_States (Discrete)

12.1.2 BlockScript Program Structure

BlockScript programs employ two kinds of variables, block variables and local vari-
ables:

■ Block variables correspond to data flow and parametric entities in the block dia-
log for the block being defined. These are the inputs and outputs of the block
update equations illustrated in Figure 12-1 on page 12-1.

■ Local variables take their datatyping and meaning from the program context in
which they are defined.

WARNING: Local variables cannot be used to pass data between the INIT,
OUTPUT, or STATE phases. Recompute the data, use a parameter
to store the data, use a state variable, or use a block output.

All the inputs and outputs in Figure 12-1 are defined using lists of block variables,
and the updating of the outputs and derivatives is performed using the equations in
the BlockScript program. The design of the BlockScript program lets you choose
variable names that are descriptive in the context of the block equations.

The general structure of a BlockScript program is as follows:

# Block variable names               :  Category: (Var1, Var2, ...);
# Datatype and dimensions definitions:  Type Var (Dimension);
# Block output update equations      :  ...
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1. The structure of a block variable name definition is:

Category: (Var1, Var2, ...);

Categories are reserved keywords in BlockScript; a complete list of the sup-
ported categories is shown in Section 12.2.1.

2. BlockScript supports three data types: integer, float, and logical. The format of a
datatype and dimension definition is:

Type Var (Dimension)

Block variables must receive a definition in this section; you may also assign a
datatype and dimension definition to any local variables.

3. Block output update equations. The format of equation statements are given in
Section 12.3.

The three sections must be presented in the order shown. The sections are defined
by the formats of the statements in context, such that the first datatype and dimen-
sion definition marks the end of the block variable names, and the first statement
with the format of a block output update equation marks the end of the datatype
and dimension definitions.

In the following example, a simple addition block is programmed with two input
variables, A and B, and one output variable, C. Also note that the input list implies
an ordering, which will appear in the block defined from this code. A is the first in-
put while B is the second input.

Inputs: (A, B);
Outputs: C;
C = A + B;

12.2 BlockScript Variables

BlockScript variables include block variables and local variables. Note the following:

■ Language operators, and function names, and keywords are case-insensitive.

■ Variable names are case-sensitive.

■ Environment variables must be fully capitalized.
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12.2.1 Block Variable Declarations

Block variables are declared with the following list construct:

Category: (Var1, Var2, ...);

■ Category can be one of the predefined list category names in Table 12-1.

■ If there is only one variable in the list, parentheses are not required. If there are
no variables in the list, then the parentheses are required but contain nothing.

■ For all lists, order is significant. The first variable maps to the first input/out-
put/state, etcetera, and the last variable maps to the last element.

The name list mechanism can be dispensed with altogether if the programmer is
willing to accept the default names for each category, as listed in Table 12-1.

TABLE 12-1 Default Variable Names

List Category Name
Default

Var Name
Definition

Inputs u A list of input variable names.

Outputs y A list of output variable names.

States x A list of state names.

State_Derivatives xdot  A list of state derivatives. This declaration is only valid
for continuous dynamic blocks. The dimension of this list
must agree with the dimension of the States list.

Next_States xnext A list of next state variable names. This declaration is
only valid for discrete dynamic blocks. The dimension of
this list must agree with the dimension of the States list.

Parameters (none) A list of parameter names. This list implies order; if Auto-
Code maps the variables into Rpar  and Ipar  vectors,
mapping will duplicate the order in the Parameters list.

If a list of parameters is supplied, additional fields will be
added to the block dialog in the order specified in the Pa-
rameters  list.

Environment See
Section
12.3.5

The SystemBuild and AutoCode environment provides
predefined variables that can be imported into the Block-
Script code through this Environment list. The variables
in Section 12.3.5 are available regafrdless of environment
(simulation or generated code).
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For example, a simple signal generator might be coded.

Environment: TIME;
Inputs: ();
Outputs: y;
y= Sin(TIME);

Parameter Phi:
Parameter Theta:
Parameter Psi:

You can enter hard default values for these parameters in the dialog box. Also, you
can provide a %Variable name for each parameter. The maximum number of param-
eterized variables for a BlockScript block is 10.

12.2.2 DataTypes and Dimensions

BlockScript supports three datatypes: float, integer, and logical. Datatyping can be
performed according to the rules in Table 12-2.

If local variables are not explicitly datatyped, then they are defined as scalar vari-
ables whose datatype agrees in context with the first statement that defines them in
the BlockScript code. Consider Example 12-1 on page 12-6, which defines a non-
linear breakpoints block.

TABLE 12-2 Datatyping Rules

Variable Default Type OK to Datatype Variable?

Inputs float Yes

Outputs float Yes

States float Yes

State_Derivatives float Yes; type must agree with States.

Next_States float Yes; type must agree with States.

Parameters (user-defined) Yes, required

Environment (predefined) No. Note, TIME is always float scalar.
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EXAMPLE 12-1: BlockScript for Non-linear Breakpoints Block

Inputs: U;
Outputs: Y;
Parameters: (UBrk, YBrk);
Float U, Y(:);
Float UBrk(:), YBrk(Y.size,:);
J = 1;
K = UBrk.size;
Uval = U;
While J < K-1 Do
   M = (J + K)/2;
   If Uval < UBrk(M) Then
      K = M;
   Else
      J = M;
   EndIf;
EndWhile;

Alpha = (Uval - UBrk(J)) / (UBrk(K)- UBrk(J));
For I = 1:Y.size Do
Y(I) = (1.0-Alpha)*YBrk(I,J) + Alpha*YBrk(I,K);
EndFor;

■ The input, U, is a scalar.

■ The output, Y, is a vector that has a wildcard dimension (the colon operator);
see Wildcard Dimensions and Dialog Imported Information. Its dimension will be
imported from the Outputs field in the block dialog. The breakpoints are speci-
fied as parameters with two variables, UBrk and YBrk . Parameters can also be
given wildcard characters for their dimensions, so that they can be scaled from
user inputs in the block dialog.

■ A variable’s size can be used as a dimension in any name space except Environ-
ment (because environment variables have predefined sizes). Note the use of the
compile time variable Y.size to obtain the current dimension of a vector vari-
able. For matrix variables, you can use the variables Var.rows and Var.col-
umns to specify a dimension.

■ Parameters and local variables can be scalars, vectors, or matrices.

■ Inputs, outputs and states can use names that are scalars or vectors.
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Wildcard Dimensions and Dialog Imported Information

The : wildcard character can be used for any parameter dimension. This is possible
because the dimensions are not constrained in the block dialog box. For example:

Parameters: (F,G,H);
Float F(:), G(:,:), H(:,:);

The : wildcard character may also be used for dimensioning Inputs, Outputs,
States, and/or State_Derivatives (Next_States if discrete).

A colon wildcard can only be used with a signal name if there is just one name in
the list. This is because the block dialog provides only the total number of signal
values and does not accommodate a list of names.

Inputs: U;
Float U(:);

Any variable’s total size, (Var.size ), number of rows, (Var.rows ), or number of
columns, (Var.columns ) may be used as a dimension for any other variable (ex-
cluding itself). The size of a variable may be used before the size and datatype are
defined. For example,

Inputs: U;
Float WorkSpace(U.size, Pivot.size);
Float U(:), PivotVector(5);

Other dimensions can be described by Var.size for vectors and Var.rows and
Var.columns for matrices. This constrains the specified dimension to follow the di-
mension of Var . Any constrained dimension (either hardcoded or described by
Var.size ), is not free; it cannot be changed in the block dialog.

Dimensions that are specified with the wildcard character can later be changed by
the user from the BlockScript block dialog, If the user decreases the dimension, in-
formation referenced outside that dimension will be discarded. If the user increases
the dimension, the last value of the vector is repeated to extend the vector. If you ex-
tend a matrix, the extended area filled with zeros.

The variables, Var.size , Var.rows , Var.columns , as well as a generic casting
function, Var.type()  can be used in the code.

For I = 1:A.rows Do
   For J = 1:A.columns Do
      Y(I) = Y.type(A(I,J)*U(J));
   EndFor;
EndFor;
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Var.size has special meanings for differing variable shapes. For scalars it is one,
for vectors it is the dimension specified (wildcarded or not), and for matrices it is the
product of the two specified dimensions.

Method for Implied Datatyping

As stated before, not all datatypes must be explicitly specified. In Example 12-1 on
page 12-6, the variable J is an integer because it is assigned the integer literal 1.
(The decimal point and/or E in scientific notation are used to specify float literals).
K is also an integer because UBrk.size returns an integer. M is an integer because
(J+K)/2 evaluates to an integer. Uval and Alpha are float variables because they
are evaluated with float expressions. I is an integer because 1:Y.size is an integer
range expression. (It is possible to code floating point For loop ranges such as For
Angle = -Pi : Pi/10.0 : Pi Do .)

Integers must be used so that AutoCode can generate efficient algorithms for the
blocks. If you mix floats and integers in expressions, BlockScript will promote the
entire expression to float at the operation that mixes the two datatypes. The result
of the operation is then a float, and the float datatype is then propagated through
the outer expressions. Consider the following equation.

Integer I, J, K;
I = (J + K)*3.14 + 255 / (L + M);

Both (J + K) and 255 /(L + M) are evaluated as integer expressions. Furthermore
since integer division causes truncation towards zero, 255 / (L+M) will contain
that truncated value. Next, multiplication by 3.14 makes (J + K)*3.14 a float
which when added to the integer expression 255/(L+M) makes the resultant right-
hand-side (RHS) of the equation a float expression. Finally since I is an integer, the
RHS float expression is again truncated towards zero before storing the result in
variable I . In short, the only difference between integer and float is the implied
truncation towards zero when dividing two integers or when assigning an integer
with a float expression. It is more disciplined and left to the user to explicitly mix
arithmetic with the casting functions Integer()  and Float() .

It should also be noted that although logical is a special form of integer, and al-
though the C language treats both the same in its syntax, other languages such as
FORTRAN do not. Therefore, logical variables must be declared and used when they
are intended to hold logical results; see Example 12-2 on page 12-9.
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EXAMPLE 12-2: Declaring Logical Variables

Logical Negative, InRange, OK;
Negative = A < 0.0;
InRange= A > B & A < C;
OK = InRange & ! Negative;
If OK Then
...
EndIf;

BlockScript Datatypes and Code Generation

If you intend to generate code, only the float datatype should be used within the
BlockScript block. In most situations, if the Typecheck feature is disabled, all signal
types are forced to be float. The BlockScript block is an exception; its datatypes are
unchanged; any mismatch has no effect on simulation.

12.3 The BlockScript Language

As defined in BlockScript, a primitive block is an entity that accepts inputs and pro-
duces outputs at times that are scheduled by the simulation or AutoCode generated
scheduler.

12.3.1 Operators and Precedence

BlockScript’s precedence of operators is similar to those in the C language. One dif-
ference is that, in C, the logical datatype is an integer and therefore logical operators
combine integer values. In BlockScript, logical and integer data are different. Block-
Script makes a distinction between numeric equivalence, ==, and logical equiva-
lence, ~, but places them next to each other in the table to provide the same
precedence as in C. However, C puts the precedence for Bitwise XOR, ^ in C, be-
tween ANDand OR. Since XORis also NEQV, !~ , BlockScript places it with EQV, ~.
Table 12-3 on page 12-10 illustrates the BlockScript operators and precedence.

12.3.2 Assignment Statements and Expressions

A variable may be assigned using an expression to the right of the assignment oper-
ator. By default all block variables are float scalar data. If a local variable is not ex-
plicitly datatyped, then it is automatically assigned the datatype of the right-hand-
side expression that first defines it within its function body. Once you have chosen
the datatype, integer variables may be assigned to float expressions and vice-versa.
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TABLE 12-3  Operator Precedence

Operator Type Operators Associativity Precedence

Primary (), (Subexpressions,
Functions, Arrays)

Left-to-Right Highest

Power ^ or ** (Power) Left-to-Right

Multiplicative * (Multiply)

/ (Divide)

Left-to-Right

Unary + (Unary Plus)

- (Unary Minus)

! (Not, Complement)

Right-to-Left

Additive + (Plus)

- (Minus)

Left-to-Right

Shift << (Shift Left)

>> (Shift Right)

Left-to-Right

Range : (Define Range) Right-to-Left

Relational < (Less Than)

<= (Less Than or Equal)

> (Greater Than)

>= (Greater Than or Equal)

<> (Not Equal)

== (Equal)

Left-to-Right

EQV ~ (Equivalence, Eqv, Nxor)

!~ (Not Equiv, Neqv, Xor)

Left-to-Right

AND & (And, Intersection)

!& (Nand)

Left-to-Right

OR | (Or, Union)

!| (Nor)

Left-to-Right

assignment =  (Variable Assignment) Right-to-Left Lowest
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Logical variables can only be assigned relational or logical expressions. There are
five kinds of expressions:

Arithmetic Expressions

Arithmetic expressions use only arithmetic operators. These expressions use the op-
erators listed in Table 12-3. Note that the bitwise operators use the same symbols
as the logical operators. Bitwise operators only take integer expressions for their op-
erands.

Relational Expressions

Relational expressions compare two arithmetic expressions to form a logical result.
Relational expressions use the following operators:

Logical Expressions

Logical expressions combine logical expressions and/or relational expressions with
logical operators to produce logical results. Logical operators are as follows:

Range Expressions

Range expressions combine arithmetic values or expressions with the Define Range
operator (:) to specify a set of values. A range expression has the following format:

Range := Start : Increment : End

If the increment is omitted then its value is 1. Ranges may be either integer or float.

Set Expressions

Set expressions combine range expressions with the Union operator (|) to define
sets of values. If ranges are used with the float datatype, sets are composed with a
discrete number of continuous regions of values.

< <= > >= <> ==

primary: ()

unary: !

logical eqv: ~ !~

logical and: & !&

logical or: | !|
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The syntax for a Set  expression is shown below:

Set := Region | Region | Region | ...
Region := { Range | Value }

The vertical bar enclosed in braces in the syntax represents a choice between the
enclosed identifiers. The vertical bar used in the Set description is the Union opera-
tor, | , and is required in the syntax. The Intersection operator, &, and parentheses
(), are not used in Set expressions. All identifiers describing a Set must be the same
datatype. The set expressions are used in the Select  clause.

12.3.3 Looping Constructs

BlockScript provides four constructs for looping and decision-making.

For Loop

The For loop can be used when the body of the loop should be executed a known
number of times. BlockScript describes the loop counting as an arithmetic progres-
sion with a Start, Increment and End value. These values can be either integer or
float, but should be consistent. The syntax for the For  loop is shown below:

For LoopVar = LoopRange Do
   LoopBody;
EndFor;

The LoopBody is any number of BlockScript statements. The LoopRange is in ei-
ther of the following two formats:

Start : End
Start : Increment : End

The default Increment  is 1.

While Loop

The While loop is used when the loop body should be executed until some condition
is met. The syntax for the While  loop is shown below:

While LogicCondition Do
   LoopBody;
EndWhile;

LoopBody is any number of BlockScript statements. The LogicCondition is any
valid scalar logical expression.
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NOTE: The expression may use any number of previously defined variables.
However, BlockScript all input variables used inside While loops must be
scalars or subscripted with literals.

If Clause

The If clause is used to conditionally execute one of several bodies of code depend-
ing on a True evaluation of some condition. The If  clause syntax is shown below:

If LogicCondition Then
   ConditionBody;
ElseIf LogicCondition Then
   ConditionBody;
Else
   ConditionBody;
EndIf;

There may be any number of ElseIf clauses. ConditionBody can consist of any
number of BlockScript statements. LogicCondition is any valid scalar logical ex-
pression; it may use any number of previously defined variables. Both the ElseIf
and Else  clauses can be omitted.

Select Clause

The Select clause is used to conditionally execute one or more bodies of code de-
pending on a variable whose value matches the values in the corresponding sets
specified with Case statements. The following illustrates the syntax for the Select
clause:

Select ChoiceVar ClauseForm
Case ConstSet
   CaseBody;
Case ConstSet
   CaseBody;
Otherwise
   CaseBody;
EndSelect;
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Exit Statement

The Exit statement is used to break out of loops. If used in a For loop or While
loop, execution resumes just after the matching End keyword. Note that unlike the
C language’s break  statement, Exit  is not used to break out of Case statements.

ChoiceVar ChoiceVar  is any integer or float variable previously defined.

ClauseForm BlockScript provides two forms of Select  clauses. In the above
syntax, ClauseForm can be either OneOf or AllOf . There must be
at least one case in the Select  clause.

■ The OneOf keyword instructs BlockScript to execute only the
first Case that matches.

■ The AllOf keyword allows BlockScript to execute all cases that
match.

■ The optional Otherwise case will only be executed if no cases
match. Note that at the end of each CaseBody there is an auto-
matic break to the next Case that matches (if AllOf ) or EndSe-
lect  (if OneOf or in Otherwise ). This case can be omitted.

CaseBody The CaseBody  appears in any number of BlockScript statements.

ConstSet ConstSet is a set of values specified by scalar constant values and
constant ranges.

A vertical bar (|) represents a choice between one or more identifi-
ers. In the case of ConstSet , it  functions as the Union operator.

■ The datatypes for all ConstSets must agree within the set and
must be the same type as ChoiceVar .

■ If the ChoiceVar is type float, a range cannot be used. For ex-
ample 1.0:3.0 will not be accepted. To achieve the same thing,
specify 1.0|2.0|3.0.

The ConstSet  syntax shown below is recursive, such that subsets
within ConstSet can be ranges or values, specified as floats or inte-
gers, if appropriate.

ConstSet Subset | Subset |Subset  ...

Subset Range | Value

Range StartValue : EndValue

Value IntegerValue | FloatValue
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Iterate Statement

The Iterate statement is used to invoke the next iteration of the corresponding
current For or While loop. Execution resumes where the loop variable is incre-
mented in For  loops or where the logical condition is tested in While  loops.

12.3.4 Functions

This section describes all of BlockScript intrinsic functions.

Var.rows, Var.columns, Var.size

These variables return the size of a variable. Var.rows and Var.columns should
be used on matrix variables while Var.size should be used for vectors. In the ma-
trix case Var.size returns the product of row and column size. All of these vari-
ables return integer values.

Integer(a), Float(a), and Var.type(a)

These functions provide explicit casting operations for converting float to integer
and vice-versa. The Integer casting function truncates the value towards zero as is
the case for Fortran, C, and Ada. Var.type is a general casting function that pro-
duces a resulting datatype that agrees with Var . If Var ’s datatype is an integer, then
integer truncation would occur.

Abort(n)

Abort is a Void function. Its output cannot be assigned to a variable, but rather, it
is used as a procedure call. It must be passed an integer literal value which encodes
a severity level and a message index. Its purpose is to stop (or raise an exception)
during the simulation or AutoCode code generation. The values for the integer are
the same error message variables as those defined for UserCode blocks; these are
negative values. See Simulation Errors on page 14-49 for details.

Abs(a)

This function takes the absolute value of its argument. The resultant datatype is the
same as that of the argument.

Acos(a) and Asin(a)

Acos and Asin return the arccosine and arcsine, respectively, of the argument. The
argument must be float and if it is larger than 1 or less than -1 a run-time error will
occur. Acos returns a float value in the range 0 to Pi. Asin returns a float value in
the range: -Pi/2 to Pi/2.
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Atan(a) and Atan2(y,x)

Both of these functions return the arctangent of their input argument(s). Atan2 re-
turns the arctangent of (y/x) which is a float value in the range -Pi to Pi dependent
upon which quadrant (x,y) maps in the Cartesian coordinate frame. Atan , on the
other hand, returns a float value in the range -Pi/2 to Pi/2. If Atan2 is passed two
zero values, a run-time error will occur.

Bset(a,b), Bclear(a,b), Btest(a,b) and Btoggle(a,b)

These functions set, clear, test or toggle bit b in integer word a. The bit position, b, is
0 for the low-order bit. This definition is consistent with the Digital FORTRAN in-
trinsics: IBSET, IBCLR. Btest returns a logical result and is consistent with the
Digital FORTRAN intrinsic with the same name. Digital FORTRAN does not have a
Btoggle  function, which we provide here for convenience.

BitLshift(a,b) and BitRshift(a,b)

BitLshift(a,b) shifts integer word a left b bits while BitRshift(a,b) shifts in-
teger word a right b bits. The output type is an integer.

BitNot(a), BitOr(a,b) and BitAnd(a,b)

BitNot performs a bitwise complement of integer word a. BitOr and BitAnd per-
form bitwise And and Or, respectively, for their input arguments. The output type is
integer.

Bound(a,b,c)

Bound returns b if a is less than b; c if a is greater than c; otherwise, a is returned.
The arguments must be all float or all integer. The returned value is the same data
type as the arguments to Bound .

Exp(a)

Exp returns the value e raised to the power a where e is the natural number
(=2.7183...). The argument to Exp must be a float and the returned value is a float.

Log(a) and Log10(a)

Log returns the base e logarithm of its input argument while Log10 returns the
base 10 logarithm. Both functions require a float input argument and produce a
float result. If the input is negative a run-time error will result.
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Max(a,b) and Min(a,b)

Max returns the larger of the two arguments while Min returns the smaller of the
two. Both arguments must agree in datatype, which is the datatype of the returned
value.

Mod(a,b)

This function takes two arguments. It performs the operation:

a - b*Integer(a/b)

Both a and b must be the same datatype. The resultant datatype is the same as that
of its arguments.

Quad(a, w, x, y, z)

Quad accepts float arguments and returns a float result. The function is evaluated
as follows. If a is in the interval [x,y] then the output is 1.0. If a is less than or
equal to w or greater than or equal to z then the output is 0.0 . Otherwise, if a is in
the interval (w,x) then the output is an interpolated value between 0.0 and 1.0; or,
if a is in the interval (y,z) then the output is an interpolated value between 1.0
and 0.0. The values, w, x , y , and z must be increasing. Note that w may be equal to
x  and/or y  may be equal to z .

Round(a), Truncate(a), Floor(a) and Ceiling(a)

These functions quantize the float input and produce a float output. Round quan-
tizes to the nearest integer. Truncate quantizes to an integer in a direction towards
zero. Floor quantizes to an integer value in the direction of negative infinity. Ceil-
ing  quantizes to an integer value in the direction of positive infinity.

Sign(a)

Sign computes the signum function of its input. It is defined to be +1 when a > 0, -
1 when a < 0, and 0 when a == 0. The resulting datatype is the same as that of its
argument.

Sin(a), Cos(a), and Tan(a)

Sin computes the sine of its input while Cos computes the cosine of its input. Both
functions require a float input and return a float result in the range: -1 to 1. Tan
computes the tangent of its argument. If a is a multiple of π, Tan will overflow. The
output of Tan is float.
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Sinh(a), Cosh(a) and Tanh(a)

These functions compute the respective hyperbolic functions. Sinh returns a float
value. Cosh returns a value that is greater than or equal to unity. Tanh returns a
value greater than -1 and less than +1.

Sqrt(a)

This function returns the square root of its input argument. A run-time error will
occur if the input argument is negative. Both the argument and the returned value
are float.

Swap(a,b)

This function swaps the values referenced by a and b. a and b must be simple vari-
able name references and can either be both float or both integer.

Trg(a, x, y, z)

Trg accepts float arguments and returns a float result. The function is evaluated as
follows. If a is equal to y then 1.0 is the result. If a is less than or equal to x or
greater than or equal to z, then 0.0 is the result. Otherwise, if a is in the interval
(x,y) then the output is an interpolated value between 0.0 and 1.0; or, if a is in the
interval (y,z) then the output is an interpolated value between 1.0 and 0.0. The val-
ues x, y, and z must be increasing. Note that x may be equal to y and/or y may be
equal to z.

Urand(s,v), Nrand(s,v), OUrand(s, ouLast, timeInterval, timeConst,v)

These functions generate random numbers. The first argument, s, is an integer
seed. The seed must be declared as a parameter, so it can be changed by the func-
tion. (Directly specifying an integer will not work as expected, but a parameter will.)

■ Urand is a uniform random number generator that returns a float value in the
range 0.0 to 1.0 in the v  argument.

■ Nrand is a normal random number generator that returns a float Gaussian
value that has zero mean and unit variance in the v  argument.

■ OUrand implements the Ornstein-Uhlenbeck process for generating band-lim-
ited white noise. It is correlated with past history given the float values OUlast ,
timeInterval and timeConst . The timeInterval should be the delta time
between the current and previous function call. ouLast is the last value re-
turned from the previous function call. The random value is returned in the v
argument.
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12.3.5 Environment Variables

Environment variables must be all upper-case. They are read-only values.

ABSTOL

ABSTOLis the absolute tolerance specified in the sim({abstol=value}) function
call.

EPSILON

EPSILON is the smallest float value that can be added to unity and change its value.
This value is machine dependent.

INIT

For blocks without states, INIT is set True the first time the BlockScript program is
called during simulation or code generation, and False all the other times.

For blocks with one or more states, INIT is called twice, once the first time that
OUTPUTis set True, the other the first time that STATE is set True. Note that each
time the block is called with INIT and either OUTPUTor STATE True, all the other
statements in the IF INIT part will be duplicated into the IF STATE and IF OUTPUT
segments of the generated code.

OUTPUT

OUTPUTis set True to request the BlockScript program to perform output update
computations.

PI

PI  (=3.14159...) is the circumference of a circle divided by its diameter.

RELTOL

RELTOLis the relative tolerance specified in the sim(...,{reltol=value}) func-
tion call.

STATE

STATE is set True to request the BlockScript program to perform state update com-
putations.

TIME

TIME is the current absolute value for time. It is a float scalar value.
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TSAMP

TSAMP is a float value that is the sample time of the parent Discrete SuperBlock.

TSTART

TSTART is always equal to t0, the first time point of the first sim call.

12.4 Debugging Tips

With minor modifications, you can include all or part of the body of your BlockScript
program in a MathScript function, to be executed from Xmath, and run it with the
MathScript debugger.

12.5 Compiling BlockScript Blocks

During simulation, BlockScript statements are interpreted for execution. Other
types of blocks are not interpreted, and are evaluated by built-in functions. As a re-
sult, simulation speed is reduced when BlockScript blocks are used.

A solution is available for AutoCode customers. This method involves placing the
BlockScript block or blocks inside a Procedure SuperBlock, generating stand-alone
Procedure code from the SuperBlock, compiling and linking the generated code, and
finally invoking the stand-alone procedure as a UserCode block (UCB).

NOTE: This procedure gives enhanced performance at the expense of flexibility.
You cannot use %Variables inside a stand-alone procedure.

1. Write and debug a BlockScript block (named, for example, MYBLOCK) as ex-
plained in this chapter.

2. Place the BlockScript block inside a Procedure SuperBlock named MYPROC. An
easy way to do this is to:

● Select the BlockScript block, then select Edit→Make SuperBlock.

● Open the SuperBlock block dialog and name the block; for example,
MYPROC. Be sure to remember this name; it becomes the name of your
stand-alone procedure. Click OK.

● Double-click on the new SuperBlock (MYPROC) to open it. Single-click in
the SuperBlock ID bar to raise the SuperBlock properties dialog.

● On the Attributes tab, go to the Type field and select Procedure. Click OK.



SystemBuild User’s Guide BlockScript

12-21

12

3. Now, create a new SuperBlock. Go to the Catalog Browser and select
File→New→SuperBlock. Name it (for example, MYSUPER), make its type Dis-
crete; and specify at least one output. Click OK.

4. Position the Catalog Browser and the SuperBlock editor so that you can see
both. In the Catalog Browser, click the SuperBlock hierarchy heading (in the left
pane) so that all SuperBlocks are displayed in the Contents view (the right
pane).

Locate the SuperBlock MYPROC in the Contents view. Drag MYPROC from the
Catalog Browser into the Editor. Select File→Update to make sure the new infor-
mation appears in the Catalog Browser.

5. Go to the Catalog Browser SuperBlock hierarchy and select MYSUPER. Select
Tools→AutoCode. In the Generate Real-Time Code dialog Code Style field, select
Procedures, then press OK. By default, the code will go to MYSUPER.C.

The file that is generated is the source code for your stand-alone procedure. Al-
ter the model that originally contained the BlockScript block to use the newly
generated wrapper (which takes the form of a UCB).

6. Open the original model in the Editor. To replace the BlockScript block, raise
the Palette Browser and drag a UCB icon so that it covers the BlockScript block;
when you release the mouse the UCB will take the BlockScript block’s place.

7. Open the UCB for editing; in the Name field, type MYSUPER.C. In the Function
Name field, type MYPROC. Make sure that the UCB Inputs, Outputs, and States
are consistent with the original BlockScript block settings. Click OK.

The first time the new SuperBlock is simulated, the procedure code will be compiled
and linked into your simulator, creating a local version of the simucb shared library
file. Every subsequent time you run the simulator, the local version will be used.

CAUTION: Any time you simulate a model with a new stand-alone procedure
present, the system will automatically compile, link, and simu-
late using the new procedure. Old local copies of the simucb
shared library are overwritten. If the project directory still con-
tains the code objects from which the shared library was made,
they will be included in the new library. If these code objects are
not present, the simucb shared library should be removed before
starting this process so that new objects will be created.
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12.6 Examples

The following sections contain examples designed to demonstrate BlockScript capa-
bilities. The examples in Sections 12.6.1 and 12.6.2 show how an equation can be
expressed as BlockScript and included in a model. The remaining examples are
scripts that demonstrate BlockScript solutions for a variety of problems.

12.6.1 Bessel Equation BlockScript Block

This example uses a BlockScript block to model and solve a nonlinear differential
equation, also known as a Bessel equation of order zero:

To use the equation in BlockScript, it must be transformed to state-space represen-
tation:

1. Load the Catalog file from the Xmath command area:

load file="$SYSBLD/examples/blockscript_example/blkscript_ex1.cat"

2. From the Catalog Browser open BlockScript_Example1. The BlockScript block
Bessel_eq_BScript displays the script used to implement the Bessel equation.

3. In Xmath, enter the time and input vectors:

t = [0:.1:10]'; u = ones(t);

4. Enter the initial values for the %vars (shown on the Parameters tab in
Bessel_eq_BScript).

x0_1 = 2.2;  #-- Initial condition for state #1
x0_2 = 0;    #-- Initial condition for state #2

5. From the Xmath command area, simulate the model and plot the results.

[ ,y] = sim( "BlockScript_Example1", t, u, {vars} );
plot( t, y, {title = "Solution of Bessel eq. order = 0",

x_lab = "time [s]"} )?

y″ 1
u
---+ y ′ y+ 0=

ẋ1 x2=

ẋ2 x1–
1
u
--- x 2–=

y x1=
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12.6.2 Discrete PID Controller BlockScript Block

This example illustrates the BlockScript implementation of a discrete PID controller.
Of course this controller is available as a standard block, however we will demon-
strate it can also be modeled successfully using the BlockScript block. In some in-
stances you may want a PID controller with dynamically scheduled gains that can
be adjusted during actual simulation; the BlockScript implementation is a good so-
lution in this case.

To keep the example simple we will not modify the gains, however, the BlockScript
implementation of the PID controller we present is ready to be used with dynami-
cally adjusted gains.

This example uses the following equations for the proportional, integral, and deriva-
tive components (equations are represented in Z domain):

The actual output will be:

The state-space representation of the above dynamic system will be:

Where:

Sample period for the Discrete PID controller.

Proportional component gain.

Integral component gain.

Derivative component gain.
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1. Load the Catalog file from the Xmath command area:

load file="$SYSBD/examples/blockscript_example/blkscript_ex1.cat"

2. From the Catalog Browser open BlockScript_Example2. The BlockScript block
PID_Ctrl_BScript contains the script for the PID controller.

3. In Xmath, enter the time and input vectors:

t = [0:.001:.04]'; u = ones(t);

4. Enter the initial values for the %vars (shown on the Parameters tab in
PID_Ctrl_BScript).

ts   = 0.001  #-- Sample period for the Discr PID controller [s]
x0_1 = 0;     #-- Initial value for integral   state #1
x0_2 = 0;     #-- Initial value for derivative state #2
kp   = 2;     #-- Proportional component gain
ki   = 100;   #-- Integral component gain
kd   = 0.002; #-- Derivative component gain
pid_gains = [kp, ki, kd];

5. From the Xmath command area, simulate the model and plot the results.

[, y] = sim( "BlockScript_Example2", t, u, {vars} );

plot( t, y, {marker, x_lab = "time [s]",
title = "Cl. Loop step resp. (PID controller -> Motor)" } )?

12.6.3 Three-Cycle Delay Script

This example implements a three-cycle delay block. The standard delay block imple-
mentation in SystemBuild uses states and next states/derivatives. Although the
SystemBuild implementation is a complete solution, it may be expensive for much
simpler needs. Here we use a BlockScript block to develop a custom algorithm that
is highly efficient.
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EXAMPLE 12-3: Three-Cycle Delay

inputs: u;
outputs: y;
parameters: (DelayBuffer, Index);

float   u(y.size), y(:);
y.type  DelayBuffer(y.size, 3);
integer Index;

for i = 1:y.size do
   y(i) = DelayBuffer(i, Index);
   DelayBuffer(i, Index) = u(i);
endfor;

Index = Mod(Index+1, 4);
if (Index == 0) then
  Index = 1;
endif;

The parameter DelayBuffer is used for holding the input value and is copied into
the output variable when it is appropriate to do so. This buffer is 2 dimensional with
the number of rows equal to the number of outputs and number of columns equal
to the number of delay stages (3 in this example). Actual delay is accomplished by
treating this buffer as a circular buffer and moving the read/write index in a circu-
lar fashion.

The parameter Index is used to record the circular indexing details. This example
also illustrates the use of parameters for remembering values from one cycle to an-
other. Using states for such simple application would be a burden because states
are double-buffered.

DelayBuffer is initialized to an initial value specified on the BlockScript block pa-
rameters tab. Similarly, the parameter Index can also be initialized to an appropri-
ate value.

12.6.4 Linear Interpolation Algorithm Script

This example implements a simple linear interpolation algorithm. In the System-
build implementation of linear interpolation, the interpolation tables are parameters
to the block. There could be circumstances where there is a need to interpolate
among input values, i.e., the interpolation tables could be dynamic. This can be effi-
ciently implemented in BlockScript using the input variable to represent both the
actual input and the interpolation table.
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EXAMPLE 12-4: Interpolating Among Input Values

inputs: u;
outputs: y;
parameters: (Gain);
float u(:), ulocal(u.size-1), y;
integer index, length;
float slope;

for i = 1:u.size-1 do
   ulocal(i) = u(1+i);
endfor;
length = (u.size - 1) / 2;

found = false;
index = 0;
while (!found) do
  if (u(1) < ulocal(index+1)) then
    found = true;
  else
    index = index + 1;
  endif;

  if (index == length) then
    found = true;
  endif;
endwhile;

if (index == 0) then
  yout = ulocal(length+1);
elseif (index == length) then
  yout = ulocal(length*2);
else
  slope = (ulocal(index+length+1) - ulocal(index+length)) /
          (ulocal(index+1) - ulocal(index));
  y = ulocal(index+length) + slope * (u(1) - ulocal(index));
endif;

The first location of the input vector u represents the actual input while the remain-
der represents the interpolation input and output tables. The input and output ta-
bles are of the same size. The input variable u is copied into a local variable ulocal
because only local variables can be indexed with a while loop. Based on these ta-
bles, slope is calculated and the slope is used along with the actual input value to
determine the output value.
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12.6.5 Hysteresis Script

Consider the following BlockScript script for the Continuous Hysteresis (Backlash)
block in SystemBuild. To write this file to your current working directory, enter the
following in the Xmath command area:

copyfile "$SYSBLD/examples/blockscript_example/hysteresis.txt"

Note that all vector sizes are inherited from the Outputs field in the dialog box. This
means that dimension changes in the Inputs and States fields are ignored. Likewise,
the sizes for the parameters are fixed to match the Outputs dimension. In the script,
omega is the cutoff frequency from the block dialog. Note that this program uses
estate  and halfw , two local variables that are defined when they are first used.

EXAMPLE 12-5: Hysteresis Script

inputs: u; outputs: y;
states: x; State_derivatives: xdot;
parameters: (omega, width, slope);

float y(:), u(y.size), x(y.size),
xdot(y.size);

float omega(y.size),
width(y.size), slope(y.size);

for i = 1:y.size do
   y(i)=slope(i)*x(i);
   halfw=width(i)/2.0;
   estate = u(i)-x(i);
   if estate>halfw then
      xdot(i) = omega(i)*(estate
         - halfw);
   elseif estate < -halfw then
      xdot(i) = omega(i)*(estate
         + halfw);

   else
      xdot(i) = 0.0;
   endif;
endfor;
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13 SystemBuild Access (SBA)

13.1 Overview

SystemBuild Access (SBA) is a subset of Xmath commands and functions that ac-
cess the SystemBuild catalog database from the Xmath command area. SBA allows
you to create blocks, and modify, query, and delete SystemBuild objects. Almost ev-
ery SuperBlock editor function has an SBA equivalent. To see a listing of SBA com-
mands and functions, go to the Xmath command area and type:

help SBA

SBA commands and functions can be entered directly into the Xmath command
window command area, executed from within MathScripts, or called from an Xmath
UCI; in all cases SystemBuild must be running. You can use SBA to automate edit-
ing, check model consistency, query for model content, and enable interoperability
between SystemBuild and other vender supplied tools. When you combine SBA
commands with Xmath commands and functions to create looping and branching
constructs, you can create scripts to automatically create SystemBuild models with
scalable structures.

NOTE: Most blocks are supported by SBA, even custom blocks you create
yourself (Section 18.3.1 on page 18-15). However, IA icon blocks
(Section 8.5 on page 8-7), are not supported.

Figure 13-1 on page 13-2 shows how SBA fits into the MATRIXX paradigm. A Math-
Script containing SBA commands and functions is executed and interpreted by
Xmath. The interpreted SBA outputs are the same as the outputs of the System-
Build editor, including SuperBlocks, blocks, connections, STDs, and other System-
Build block diagram objects, used to create or modify SystemBuild models.
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Figure 13-2 shows how SBA can be used to extend the SystemBuild paradigm to al-
low the results of a simulation to change the model. In this scenario, a MathScript
executes a simulation. The MathScript can evaluate sim results and then execute
SBA code that modifies the model before the next simulation is started.

FIGURE 13-1 SBA MathScript Blocks in the MATRIXX Context
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13.2 Xmath Syntax Review

This section describes SBA syntax and other conventions and notation used in this
chapter. SBA syntax is exactly the same as Xmath command and function syntax
(see the Xmath Basics). The basic syntax, and the behavior of inputs, keywords, and
outputs is the same.

13.2.1 Command Syntax

Xmath commands process inputs to perform operations, evaluate expressions, ac-
cess intrinsic (or user-supplied) utilities and facilities, and more. By definition, com-
mands do not return results as Xmath values. In SBA, commands are used to
create, copy, delete, or modify SystemBuild objects in the Editor:

Command arg1, arg2, ... argn, {kwd=parameter_value}

A SystemBuild object is described by the values of its parameters, which closely cor-
respond to all enabled fields in the relevant SystemBuild dialog. A created object is
instantiated in the SystemBuild editor.

13.2.2 Function Syntax

Xmath functions operate on a list of input parameters without modifying them. SBA
uses functions to query Xmath objects. They have the following syntax:

[v1=kwd,..., vN=kwd] = function(in1,in2,{kwd=parameter_value})

The results of query function calls are returned to Xmath; any parameter that can
be queried can be assigned to a variable. Because a SystemBuild object may have
dozens of parameters that you may want to query, SBA functions take advantage of
keyword output assignment. (While this capability is available in Xmath MSFs, it is
not commonly used, because Xmath functions generally return few outputs). For an
example, see Section 13.3.2 on page 13-4.

13.2.3 Inputs, Optional Inputs, and Keywords

Each command or function has one or more required inputs, possible optional in-
puts, and keywords. These have the following properties for both commands func-
tions:

Inputs Inputs are required; these must be ordered as shown in the syntax
statement for each command or function. If a command syntax does
not appear to specify inputs, it is because a default is assumed.
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13.3 Basic SBA Tasks

This section show some basic examples of SBA syntax. Any object you can create
and modify in the Editor can be reproduced with SBA. This section shows SBA com-
mands to create a simple model, then refers to it throughout the section.

13.3.1 Create

The following example creates a SuperBlock, blocks within the SuperBlock, and
connections between them.

createsuperblock " cmd_createconnection " , {inputs=5, outputs=2}
createblock " sin " , {id=1, inputs=3}
createblock "elementproduct " , {id=2,inputs=2}
con0_1=[...
   1,3;
   2,2;
   3,1];
con1_2=[...
   2,1;
   3,2];
createconnection 0,1,con0_1
createconnection 1,2,con1_2
createconnection 1,0,[1,1]
createconnection 2,0,[1,2]

13.3.2 Query

You can query an existing block to determine what its settings are, or you can query
block options to determine the available keywords for a particular block. You must
identify a SuperBlock by its name, but you can identify a primitive block by its
name or its ID. Let’s see what the valid options are for the ElementProduct block.

[optlist] = queryblockoptions("elementproduct");optlist?

Optional Inputs An optional input appears after required inputs, and before key-
words. If specified, the order is important.

Keywords Keywords always appear within curly braces {}. They are optional, as
each is assigned a default value which will be used if the keyword is
not called. Keyword order is not important unless it violates the log-
ical rules of the Editor. See Section 13.4.
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optlist (a column vector of strings) =

 BlockType
 Name
 Id
 Inputs
 Outputs
 States
 Comment
 Location
 Size
 Color
 Faces
 OutputLabel
 OutputName
 InputName
 InputPins
 OutputPins
 Labels
 IconType
 Border
 OutputUserType
 OutputDataType
 OutputRadix
 OutputMinimum
 OutputMaximum
 OutputAccuracy
 OutputUnit
 OutputComment
 OutputScope
 OutputAddress
 CustomHelp
 Container
 PropagateLabels
 CustomIcon

Given the available parameters, we can query an existing block for selected values
by using keyword output assignment.

[l=location,s=size,ip=inputpins]=queryblock(1); l? s? ip?

l (a row vector) =   180    0
s (a row vector) =   80    80
ip (a string) =   Scalar
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13.3.3 Modify

These commands modify the model created above.

modifysuperblock " cmd_createconnection " ,
{inputlabel=["U1";"U2";"U3"]}

modifyblock 1,{labels="on"}

13.3.4 Display

The SBADISPLAY command allows you to refresh the editor window after changes
and control a diagram’s size on the model level (individual block size is controlled by
the size  keyword definition for each block). We can try this on the existing model.

SBADISPLAY, {fit}
SBADISPLAY, {normal}
SBADISPLAY, {refresh}

13.3.5 Delete

You can delete any of the elements created so far. For example,

deleteconnection 0,1
deleteblock 2
deleteSuperBlock "cmd_createconnection"

13.3.6 Sample Scripts

For examples of some sophisticated SBA scripts, see $SYSBLD/examples/export
or %SYSBLD%\examples\export . These unsupported SBA commands and func-
tions read all or part of an existing model and create an SBA script that will repro-
duce the model. Exportsuperblock.msc is able to do this for an entire
SuperBlock hierarchy. Other examples of SBA scripts can be found in $SYSBLD/
scripts . You can use any of the scripts as long as the directory is in your path; al-
ternatively, you can copy them locally and modify them to suit your purposes.
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13.4 Using SBA

This section gathers a variety of tips that will help you get the results you want
when using SBA.

13.4.1 Keyword Ordering

In general, Xmath keywords, because they have defaults, can be specified in any or-
der. However, SBA does not always keep this rule, because Xmath cannot fully
mimic the behavior of the Editor. For example, when working interactively it often
does not matter which fields you define first as long as the inputs are found to be
compatible when OK is pressed. If inputs are compatible, the Editor provides de-
faults, even for fields you did not edit; for example, if you specify three outputs, the
editor will automatically give you the opportunity to specify three output names,
three output labels, etc.

When in doubt, look at the block dialog. If you plan to define any of the values
shown above the tabs, they should be defined first, and in the order shown from left
to right. Inputs on the Parameter tab should be defined later. Let’s apply this princi-
ple to the following block dialog.
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The Name and ID are optional so it doesn’t matter when they are defined. Of the re-
maining items, Inputs must be defined first, then Outputs, then States. The dimen-
sion of the System Matrix is determined from these values.

13.4.2 Block Parameters

Many blocks have parameter dependencies, or special parameters. The query-
blockoptions function will return all parameters specific to the queried block,
however, it is possible for legal parameters to be mutually exclusive. To be sure that
you are properly using block parameters, consult the online help for the specific
block before creating your script.

13.4.3 Error Handling

Xmath interprets SBA inputs literally; an error may result if there are dependencies
between fields and the parameters are undefined, or incompatibly defined. In some
cases, however, Xmath will pass a call to the Editor; if it does not make sense, it will
attempt to create compatible settings. This is consistent with the editor’s interactive
behavior, but it makes script debugging difficult, as no error messages are returned
to Xmath when SystemBuild encounters the improper values. For example, the fol-
lowing is legal command that will create a block in SystemBuild; unfortunately you
may not get what you expect:

# legal (but undesirable) syntax:

createblock "gain",{outputlabel=["A","B","C"], outputs=3}

Regardless of the fact that you have specified three labels, this command generates
a block that has one output and one output label. When it is interpreted the output-
label is encountered first so the default number of outputs (1) is assumed and one
outputlabel is created. The final output definition is ignored because a value has al-
ready been assumed. As stated in Section 13.4.1, inputs and outputs should always
be defined first.

13.4.4 Input Formats

The online help details all SBA commands and functions. In the Xmath command
area, type help SBA to display a list of links to SBA commands and functions. Look
at different SBA commands; you will see that the input format (integer, matrix of
strings, etc., is specified for each parameter).
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The following table shows samples of possible input formats.

Multiple Input/Output Specification

A number of SystemBuild objects have multiple input and/or multiple output
(MIMO) capabilities. In these cases, certain parameters are constrained to have di-
mensions proportional to either the number of inputs, outputs or both. These in-
puts can be specified as an array of values, or, each value can be specified
separately by appending the index value to the keyword.

For example, use an array of strings to define the output names.

createblock "gain", {id=13,inputs=3,
outputs=3,outputname=["gain_A","gain_B","gain_C"]}

TABLE 13-1 Possible Input Formats

Format Comment or Example

Float Argument requires a single float value.

Float,
Vector, or
Matrix

Argument requires a matrix of floats. Size and matrix orientation is
command dependent.

modifyblock "test",{outputaccuracy=[.01,.001,.0001]}

Integer Argument requires a single integer value.

queryblock(98)

Integer
Matrix

Argument requires a matrix of integers. Size and matrix orientation is
command dependent.

createconnection 2,0,[1,2]

String The string length may be context sensitive.

createblock "timedelay", {name="td"}
modifyblock "td",{id=2}

Matrix or
Vector of
Strings

The number of strings and the matrix orientation are
context sensitive.

modifyblock 99,{outputcomment=["com1","com2","com3"]}

Boolean Indicates the keyword is a simple yes/no or on/off parameter. In these
cases, the presence/absence of the keyword defines the value.
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To change one name after the fact, append the index number to the keyword:

modifyblock 13, {outputname2="changed_gain_B"}

13.4.5 SuperBlock Editor Coordinate System

As shown in Figure 13-3, the SuperBlock Editor coordinate system occupies the
fourth quadrant of the coordinate plane. In this quadrant, X values are positive and
Y values are negative. A full-sized Editor window thus lies between (0,0) and (1200,
-900). By default, all blocks except containers are 80 x 80; containers are 100 x100.

When SBA places new blocks in an empty diagram, the default location of the first
block 1 is (180,0), and if no ID is specified the default ID is 1. If the default is as-
sumed for subsequent blocks they will be placed from left to right and numbered se-
quentially; if the number of blocks is greater than 10, a new row will be started at
(180,-180). Note that block 11 starts a new row. You can position blocks in the dia-

FIGURE 13-3 SystemBuild Coordinate System
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gram by specifying a block ID. For example, assigning a block ID of 14 will place a
block at (720,-180), as long as that position is unoccupied.

You should not specify a Y value greater than 0; although SystemBuild will place
your block, unpredictable numbering can result.

13.5 Tutorial

As is explained above, SBA allows you to write MathScript files that contain com-
mands to build, modify, and query a SystemBuild model. Also, Xmath allows you to
execute commands that simulate, linearize, and perform other operations on mod-
els. These two types of operations can be combined in a MathScript to build and ex-
ecute models.

13.5.1 Building the Predator-Prey Model

This model is from the field of population demographics, illustrating the interaction
of a predator and a prey species in a competitive environment. You can copy it from
$SYSBLD/examples/pred_prey/predprey.ms .

# Create predator prey model using SBA
# ____________________________________
#
#
# Build window must be opened first
build
#
# Create the top level SuperBlock
createsuperblock "predator_prey",
{inputs=1,outputs=2,type="continuous"}
#
# Create the prey integration loop
createblock "integrator",

{name="x_prey",id=1,location=[100,0],initialstates=1}
createblock "gain",

{name="c_times_xprey",gain=1,id=2,location=[300,0]}
createblock "summer", {name="xdot_prey",id=3,location=[500,0]}
#
# Connect the prey integration loop
createconnection 1,2
createconnection 2,3, [1,1]
createconnection 3,1
#
# Create the predator integration loop
createblock "integrator", {name="x_pred",id=4,
location=[100,-300],initialstates=1}
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createblock "elementproduct", {name="a_xpred",id=5,
location=[300,-300]}
createblock "summer", {name="xdot_pred",id=6,
location=[700,-300],icontype="special"}
#
# Connect the predator integration loop
createconnection 4,5, [1,1]
createconnection 5,6, [1,2]
createconnection 6,4
#
# Create the blocks for the interaction between predator and prey
createblock "gain",

{name="b_times_xprey",gain=2,id=7,location=[250,-150]}
createblock "elementproduct",

{name="b_xpred_xprey",id=8,location=[400,-150]}
createblock "gain", {name="k",gain=.5,id=9,location=[600,-150]}
#
# make the connections between the two loops
createconnection 1,7
createconnection 7,8, [1,1]
createconnection 4,8, [1,2]
createconnection 8,9
createconnection 8,3, [1,2]
createconnection 9,6, [1,1]
#
# Make the external connections
createconnection 0,5, [1,2]
createconnection 1,0, [1,1]
createconnection 4,0, [1,2]

Note that the most natural way of operating within the SystemBuild editor may dif-
fer sometimes from the obvious way of doing things in SBA. When working interac-
tively it is typical to create a few blocks, then perhaps duplicate blocks in order to
build the model quickly and efficiently; you may connect a few blocks, then create
more, putting in the external inputs and outputs as you go, and connecting things
whenever it seems convenient. By contrast, in this MathScript we first create a loop,
then form the connections; we then create the second loop and form its connec-
tions. We create the blocks that work between the two loops, then connect them; fi-
nally, we add the external inputs and outputs. You can organize your script as you
see fit.

13.5.2 Simulating the Predator-Prey Model

This MathScript file is available on your system as $SYSBLD/examples/
pred_prey/predprey_driver.ms , which in turn calls (executes) the previous file,
$SYSBLD/examples/pred_prey/predprey.ms. Next, we create the time- and in-
put data vectors, run the simulation and plot the output.
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# Create the model
execute file = "predprey.ms"
# Create the t and u input vectors
t = [0:.1:20]';
u = ones(t);
#
# Run the simulation
y = sim("predator_prey",t,u);
# plot the results
plot(t,y)?
#
# modify the model
modifyblock 9, {gain=.2}
# rerun the simulation
y2 = sim("predator_prey",t,u);
#
# plot outputs from both simulation runs
plot(t,[y,y2],{linecolor=["black","black","red","red"],
               linestyle=[1,2,1,2]})?
# save the output data
save t y "predprey.out" {matrixx,ascii}
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14 UserCode Blocks

14.1 Introduction

The SystemBuild UserCode block (UCB) interface allows you to call your own (or any
external) C and FORTRAN subroutines from within the SystemBuild program. A
UCB may be connected and manipulated within your model, just like any block in
the standard block library. The hand-written source code instructions for UCBs are
referred to as UserCode functions.

Before using UCBs, you must familiarize yourself with programming, compilation,
and linking procedures for your hardware platform and environment.

In SystemBuild, there are two types of UCBs: explicit and implicit. For most cases,
you should use the explicit version. The implicit version is only required when im-
plicit equations are used; implicit equations require using the DASSL, ODASSL or
GEARS integration algorithm. The ImplicitUserCode block is restricted to continu-
ous systems, whereas the UserCode block has no restrictions.

Note that SystemBuild UCBs differ from the hand-written UCBs used for AutoCode.
The differences reflect the varying needs of simulation as contrasted with generated
real-time code. In a simulation environment, provision must be made for continu-
ous and hybrid considerations such as linearization, implicit equations, and state
events. AutoCode does not support these features and has strict performance re-
quirements and a fixed calling sequence. The Integrated Systems template files
(usr01.c or usr01.f for simulation, sa_user.c for AutoCode) reflect these differ-
ences. SystemBuild UCBs cannot be used in AutoCode, however, you can link Auto-
Code hand-written UCBs into the SystemBuild simulation engine and simulate
them, but their functionality will be limited to what AutoCode supports.

This chapter deals with the programming and linking aspects of UCBs. See the on-
line help for the UserCode block for information on the block dialog itself.
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In this chapter, the notation for indexing arrays (particularly the IINFO array) fol-
lows FORTRAN conventions: indexing starts with 1, index values appear in paren-
theses (). For the C language, the corresponding indexes would start with 0, and the
index values would appear in square brackets []. See the $SYSBLD/src/usr01.c
and iusr01.c  files for comparative lists of the C and FORTRAN conventions.

14.2 The Structure of UCBs

The design of the UCB interface emphasizes a paradigm of accepting inputs and re-
turning updates of states (optional memory elements that carry information from
one cycle to the next) and required outputs.

14.2.1 Explicit UCBs

In continuous systems, the explicit UCB can represent a set of first-order ordinary
differential equations (ODE) of the form:

In discrete systems, it can represent a set of first-order difference equations of the
form:

In the above equation, u is the input vector, x is the state vector, and y is the output
vector.

The UserCode function is called from the simulator to compute or and y.
The simulator will calculate and pass it to the UserCode function; this value
should not be modified except during initialization. There is one exception: in con-
tinuous UCBs, x can be modified during the event call for a state-event simulation
(see Section 14.2.6 on page 14-13).

14.2.2 Implicit UCBs

For continuous systems only, the implicit UCB can represent the more general class
of differential algebraic equations (DAE); that is, models described by both implicit

ẋ f x u,( )=

y g x u,( )=

xk 1+ f x k uk,( )=

yk g xk uk,( )=

ẋ xk 1+
x
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differential and algebraic equations. In the most general form, DAE systems are
mathematically described by equations of the form:

EQ. 14-1

f is a vector-valued function with dimension equal to the number of states, and g is
the output equation vector, with dimension equal to the number of outputs.

In the init  section of the implicit UCB, both the x and  values may be initialized.

If, for example, an ODE is expressed as a DAE, the right-hand side of the equation
must be in the proper form:

EQ. 14-2

Note that the DAE integrator calculates both x and . The UserCode function simply
evaluates the implicit equation in the variable f with the supplied x and
values. The integrator uses f as the local residual error and attempts to maintain it
below a certain threshold.

The implicit UCB may also represent overdetermined differential algebraic equa-
tions (ODAE), that is, models that have more equations than unknowns. These
types of systems are mathematically described by equations of the form:

EQ. 14-3

where f has dimension nx and the constraint equation fc has dimension nc, which is
the number of additional constraints. The number of constraints cannot exceed the
number of states. In this case, make sure that the number of constraints, nc, is
specified in the implicit UCB block parameter dialog.

14.2.3 Implicit UCB Implementation

The equations of motion for multibody dynamics often result in systems of DAEs
that sometimes possess additional constraints that the physical system must sat-
isfy. In some cases, these equations can be reduced to explicit form with algebraic
manipulations. However, reduction by analytical or numerical methods may require
strong simplifications or serious analytical and numerical difficulties may result.
For such problems, formulation and numerical solution of the equations of motion
in the DAE or ODAE form offers the most convenient approach.
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ẋ
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Consider the implicit differential equation:

The system has an index of 0 if and only if is not singular. Note that this means
that the equation can be (locally) transformed into an explicit form
without any differentiations. If at least one differentiation of the implicit differential
equation is required to transform the DAE into explicit form, then the DAE is said to
have an index of 1. In general, assuming an index k, a DAE requires k differentia-
tions to transform it into explicit form.

In order for SystemBuild to solve a DAE with DASSL, ODASSL, or GEARs (ialg op-
tions 6, 9, and 10, respectively), the DAE must have an index of 0 or 1. This is be-
cause these algorithms are not designed to handle systems of index greater than 1.
In particular, DASSL and ODASSL will fail if the Jacobian is singular:

EQ. 14-4

See Section 14.2.4 for information concerning how to use simout for a workaround
when the operating point computation fails due to a singularity of the Jacobian.

For a DAE defined using the implicit UserCode block, when a simulation is started,
the initial conditions and must be consistent, that is, they must satisfy:

EQ. 14-5

If Equation 14-5 is not satisfied, the algorithms may fail when the integration pro-
cess is started.

In exactly the same way, any constraint equations that may be part of the implicit
UCB should also be satisfied by the initial conditions:

EQ. 14-6

When using ODASSL, SystemBuild first calculates the rank of the matrix . If
there are derivatives that do not explicitly appear in the equations, then the equa-
tions that are associated with the variables are de-emphasized in the local error cal-
culations. For an example of this procedure, see Example 14-1.

The ODASSL technique for incorporating the constraints into the DAE is numeri-
cally equivalent to the Gear Stabilization technique. If a DAE is integrated without
its constraints, the solution tends to “drift away” from the correct answer. The con-
straints act as corrections that stabilize the solution.
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The most common type of DAEs or ODAEs appear in multi-body system dynamics,
such as vehicles, satellites, and robots. Typically, the DAEs obtained from the
Lagrangian formulation yield the following equations of motion for holonomic sys-
tems:

EQ. 14-7

where:

In order to successfully solve such a system in SystemBuild, an index 1 formulation
must be obtained (higher index formulations may fail during integration).

Since the constraint gp(p) is a function of positions, it can be differentiated to obtain
constraints on velocity and acceleration:

EQ. 14-8

Thus, three types of formulations are possible with this example:

1. Unconstrained DAE formulations:

a. Index 3 formulation:

EQ. 14-9

p Generalized position variables.

v Generalized velocity variables.

M The inertia matrix.

f Function of Coriolis, centrifugal, and gravitational forces, and external in-
puts, u.

gp Position constraints.

l Generalized constraint forces, also called Lagrange Multipliers. By differen-
tiating these equations, we can see that the DAE defined above has index 3.

M p( ) v̇ f p v u, ,( )
p∂

∂ gp p( )T λ–=

ṗ v=

0 gp p( )=

ga p v v̇, ,( ) ġv p v,( ) 0= =

gv p v,( ) ġp p( ) 0= =

0 M p( ) v̇ f p v u, ,( )–
p∂

∂ gp p( )T λ+=

0 gp p( )=

0 ṗ v–=
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where there are np+nv+nλ states, and the same number of equations.

b. Index 2 formulation:

Instead of , use equation .

c. Index 1 formulation:

Instead of , use equation

2. Index 2 formulation, with one constraint:

DAEs:

EQ. 14-10

Constraints:

EQ. 14-11

3. Index 1 formulation with two constraints:

DAEs

EQ. 14-12

Constraints:

EQ. 14-13

The most reliable numerical results are usually obtained from the index-1 con-
strained formulation (number 3) above.
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EXAMPLE 14-1: Pendulum Example

The above formulations will be demonstrated by a simple pendulum example; see
Figure 14-1.

The pendulum is connected to the ground with a pivot. It is assumed to have mass
m concentrated at the endpoint with link l having zero mass. An input torque u may
excite the motion, applied at the pivot point.

The equation of motion, using the generalized coordinate θ is:

EQ. 14-14

which is an ODE. For purposes of illustration, the equation of motion is derived us-
ing the coordinates x and y.

EQ. 14-15

Equation 14-15 is used in the following equations:

EQ. 14-16

EQ. 14-17

EQ. 14-18

g

y

θ
u

m

x

l

FIGURE 14-1  Pendulum Example Diagram
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The above set of equations constitutes an index-3 unconstrained formulation. For
index-2 and index-1 formulations, we use the velocity constraint:

EQ. 14-19

and the acceleration constraint

EQ. 14-20

in place of the position constraint in Equation 14-15.

Thus, an index-1, two-constraint formulation of this problem (as in case 3 above)
would be as follows:

With external input taken to be 0, let:

This example is coded as an implicit UserCode block in $SYSBLD/examples/
pendulum_imp/pend_imp.c . To run it, copy files pend_imp.c , pend_imp.dat ,
and pend_imp.ms from $SYSBLD/examples/pend_imp/ into your local directory.
Then enter:

execute file = "pend_imp.ms"

This will load the SuperBlock in pendulum.dat  and simulate the implicit UCB.

14.2.4 Implicit UCBs and sim, lin, or simout

Implicit UCBs contain equations of the form . When these equations
are not exactly satisfied, there is a residual . At the beginning of

gv ġp x ẋ y ẏ+ 0= = =

ga ġv x ẋ̇ ẋ2 y ẏ̇ ẏ2+ + + 0= = =
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ẋ
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ẋ1 x3– 0=

ẋ2 x4– 0=
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x1ẋ3 x3
2 x2ẋ4 x4

2
+ + + 0=

mẋ4 x2x5 mg+ + 0=

then

D.A. (with algebraic level constraints)

EQ. 14-21

x1x3 x2x4+ 0=

x1
2

x2
2

l 2–+( ) 0=

Velocity level constraint

Position level constraint

f x ẋ u, ,( ) 0=
δ f x ẋ u, ,( )=
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each sim , lin , or simout operation, the SystemBuild software tries to compute a
valid operating point where the residual δ is zero.

Initialize Mode

In the Implicit UCB block dialog, the field Initialize Mode sets the initial conditions to
be either states or derivatives . The interpretation of the sim , lin , or simout
input arguments x0 and xd0 for state and derivative initial conditions is dependent
on this dialog box definition.

If they are specified, the sim , lin , or simout arguments x0 or xd0 override the dia-
log defaults.

Implicit Integration Algorithm Operating Point

Implicit implementation algorithms (DASSL, ODASSL and GEARS) require that the
operating point be consistent (i.e., the residual δ is 0 or very small) at the beginning
of a simulation. Under normal conditions, SystemBuild’s operating point solver will
compute the correct initial conditions for or before the integration starts. How-
ever, there may be cases in which the operating point is singular; that is, the Jaco-
bian of the equations:

EQ. 14-22

or

EQ. 14-23

(or a mixed partial if different implicit UCBs have different initial condition defini-
tions for states/derivatives) is singular. Under these conditions it is still possible to
start the simulation (or to perform lin or simout , provided that the residual δ is
zero, or very small.

TABLE 14-1  State and State Derivative Initial Conditions

Dialog
Definition

sim, lin, or simout argument

X0 Xd0

states sim  initial condition initial condition for operating
point solver

derivatives initial condition for operating
point solver

sim  initial condition

x ẋ

x∂
∂

f x ẋ u, ,( )

ẋ∂
∂

f x ẋ u, ,( )
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When the operating point is singular, it is up to the user to provide initial condi-
tions, because the SystemBuild software cannot compute them. The simout func-
tion can facilitate this by setting initmode = 4. For example, if,

[x,xdot,y]=simout("model",
{x0=x0_init, xd0=xd0_init, u0=u0_init, initmode=4})

then the operating point computation is bypassed and the xdot vector of the output
argument of simout contains not the derivatives, but the residuals

 in its corresponding entries.

You can use this feature to write algorithms that compute the correct initial condi-
tions , or u0 iteratively.

14.2.5 Input Direct Terms

As previously mentioned, UCBs are systems that solve the following linked pair of
equations,

where all of these (x, , u, and y) are vectors of user-defined size. Since a UCB gen-
erally has multiple inputs, it is possible (in many case, likely) that one or more of the
inputs is not used in the computation of any of the outputs, but instead is used only
to compute the state derivatives (next state in the discrete case).

This makes constructs such as the one shown in Figure 14-2 on page 14-11 not
only possible, but solvable without resorting to implicit solvers.

If none of the outputs are dependent on input 1, then the simulator may compute
the other inputs to the UCB, execute the UCB, compute inputs to the Summer, and
finally compute the Summer. Later when tbhe simulator computes the state deriva-
tives, input 1 will be valid. Since the simulator cannot automatically determine
which UCB inputs are used to create outputs, the user must tell the simulator
which inputs are direct terms. Only direct terms are included in the output pass
that computes the UCB outputs. If direct terms are not identified, the simulator will
assume that this construct forms an algebraic loop, and will either require the use
of an implicit System Solver (if the SuperBlock is continuous) or will insert a time
delay between the UCB and the Summer.

To make an input a direct term, set the direct terms vector on the UCB’s Parameters
tab. This vector is of the same size as the number of inputs to the UCB block. A
value of 1 identifies the input as a direct term. A value of 0 means that the corre-
sponding input is not used in the computation of any of the outputs of the UCB.

δ f x 0 ẋ0 u0,,( )=

x0 ẋ0,

ẋ f x u,( )=

y g x u,( )=

ẋ
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Properly identifying direct terms will assist the simulator and AutoCode in the de-
tection of algebraic loops in the model (more correctly, this capability allows the
simulator to note that some loops that are seemingly algebraic are actually not).
Note that any UCB input that is not marked as a direct term is undefined during the
output pass of the UCB, but is valid for the other passes (including state, monit,
and event). Use caution. Incorrectly identifying the direct terms can invalidate the
numeric results of the simulation, since certain outputs would be computed using
undefined inputs.

EXAMPLE 14-2: Sample Source File Demonstrating Direct Terms

#include "matsrc.h"

#if (FC_)
#define dirterms dirterms_
#endif
#if (PC || VAX)
#define DIRTERMS DIRTERMS
#endif

void dirterms (iinfo,rinfo, u,nu, x,f,nx, y,ny, rpar,ipar)
int    iinfo[], ipar[], *nu, *nx, *ny;
double rinfo[], rpar[], u[], x[], f[], y[];

FIGURE 14-2 UCB with Direct Terms
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{
   int i;

   int init      = iinfo[1]==1;
   int last      = iinfo[1]==2;
   int state     = iinfo[2]==1;
   int output    = iinfo[3]==1;
   int lin       = iinfo[4]==1;
   int monit     = iinfo[5]==1;
   int event     = iinfo[6];
   int nse       = iinfo[7];
   int nip       = iinfo[8];
   int nrp       = iinfo[9];
   double time   = rinfo[0];
   double tsamp  = rinfo[1];
   double tskew  = rinfo[2];

   double *uop, *xop;

   /*----------------------------------------------------------------
     Initialization code. It is recommended that you insert code here
     to check the assumptions required for this function to operate.
     The code below is an example of some checks that can be done.
     ----------------------------------------------------------------*/
   if (init) {
      if ( *ny!=*nu ) {

 stdwrt("ERROR : Number of inputs and outputs must be equal.\n");
 iinfo[0] = -2;

      }
      if ( *nx!=1 ) {

 stdwrt("ERROR : Number of states for this example must be 1\n");
 iinfo[0] = -2;

      }
   }

   /*----------------------------------------------------------------
     State function update, compute state derivatives xdot in f vector
     ----------------------------------------------------------------*/
   if (state) {
      f[0] = u[0];
   }

   /*-------------------------------------------------------
     Output function update, compute outputs in the y vector
     -------------------------------------------------------*/
   if (output) {
      y[0] = x[0];
      for (i=1; i<*ny; i++)
         y[i] = u[i];
   }

   if (lin) {
   }
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   if (monit) {
   }

   if (event) {
   }

   /*---------------------------------------------
     Terminate simulation. If any action needs to
     be done when the simulation ends, do it here.
     --------------------------------------------*/
   if (last) {
   }

   return;
}

14.2.6 State Events

In continuous systems, both explicit and implicit UCBs support integration of piece-
wise-continuous models; i.e., equations that have discontinuities in x, or, for im-
plicit systems, in some of the derivatives. Moreover, the structure of a system may
change completely by switching among different differential equations as a function
of time or the state values.

The time points at which discontinuities occur are described by state events, which
are implicitly defined by the zeros of a user-supplied monitor function. For explicit
systems, the monitor function is of the form:

EQ. 14-24

and, for implicit systems:

EQ. 14-25

where fm is of order nse, the number of state events specified in the UCB block pa-
rameter dialog.

Discontinuities are treated by stopping the integration at each discontinuity point
and restarting the integration afterwards. Because the integration is restarted, the
discontinuity does not affect the integration method. If many discontinuities appear
during a simulation interval (e.g., at every integration step), this technique becomes
very inefficient.

f m x u t, ,( )

f m ẋ x u t, , ,( )



UserCode Blocks SystemBuild User’s Guide

14-14

If State Events are selected in the UCB parameter dialog, the UserCode function is
called from the integration executive to compute the monitor function.

If one or more of the monitor functions passes through zero, the integration execu-
tive will locate this point within a tolerance (ztol ) with respect to the time axis, and
halt the integration. At that point, the UserCode function is called and given the op-
portunity to modify the state vector for explicit systems, or the state and derivative
vectors for implicit systems. This must be performed in the event section of the UCB
code. Note that the implicit DAE should be consistent (i.e., ) with
the given state and derivative values.

If multiple state events are specified in one UCB, the event flag (IINFO(7) ) may be
used to determine which state event experienced a zero crossing. The range of the
event flag is from 1 to NSE. If there are multiple state events at a given instant, the
simulator will make individual calls for each event.

14.2.7 The Simulation API

The Simulation Application Programming Interface (SIMAPI) is a collection of library
routines that are accessible from UserCode Blocks (UCBs) during simulation to pro-
vide access to internal simulation capabilities. There are four classes of capabilities:

■ Gather information about the UCB block reference

■ Control the currently running simulation

■ Access the Runtime Variable Editing (RVE) capability

■ Gather internal information about the state of the continuous integration being
executed.

CAUTION: UCBs that take advantage of the SIMAPI capabilities will not be
transferable to the AutoCode environment.

For C language UserCode Blocks, adding a reference to the header file simAPI.h
will provide access to the SIMAPI functionality.

This capability is not recommended for FORTRAN UCBs. If SIMAPI access is at-
tempted, it is the user’s responsibility to make sure that the FORTRAN code calls
SIMAPI functions with a C language calling interface.

This document describes the SIMAPI at the time of publication. The most current
description can be found in the files simapi_ucbinfo.h , simapi_rve.h and
simapi_debug.h , all of which are located in the $SYSBLD/src directory
(%SYSBLD%\src on Windows systems).

f x ẋ u, ,( ) 0=



SystemBuild User’s Guide UserCode Blocks

14-15

14

14.2.8 Using the SIMAPI to Gather UCB Reference Information

The SIMAPI provides several functions to gather information about the current UCB
block reference, and the environment in which it resides. These functions are:

To use these functions to access block information, first make a call to
SIMAPI_GetUCBBlockInfo . This will initialize the SB and BLK structures that will
be used in subsequent calls to SIMAPI functions. Once this call has been made,
simply pass these structures, as required, to other SIMAPI functions. Any SIMAPI
call that returns a character string allocates the memory for that string as part of
the SIMAPI call. You can free that memory (using the standard ‘C’ free() call) if de-
sired.

int SIMAPI_GetUCBBlockInfo(int *iinfo, SB **SBptr, BLK **BLKptr)

Provides access to data that will allow the caller to find out information
about the instance of the UCB being called, as well as the SuperBlock in
which it exists.

int SIMAPI_GetBlockInputType(int *iinfo, int channel)

Returns the type of a specified block input.

char *SIMAPI_GetBlockInputLabel(BLK *block, int channel, SB *parent)

Returns the label associated with a specified block input.

int SIMAPI_GetBlockOutputType(BLK *block, int channel)

Returns the type of a specified block Output.

char *SIMAPI_GetBlockOutputLabel(BLK *block, int channel)

Returns the label associated with a specified block Output.

char *SIMAPI_GetDefaultOutputLabel(BLK *block, int channel)

Returns the default label associated with a specified block Output. This de-
fault is used when a user enters neither an output name nor an output la-
bel for the specified channel.

char *SIMAPI_GetBlockName(BLK *block)

Returns the name of the block reference

int SIMAPI_GetBlockId(BLK *block)

Returns the block ID of the block reference

char *SIMAPI_GetSBName(SB *Superblock)

Returns the name of the SuperBlock reference
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■ The following example uses the SIMAPI to get the name of the currently execut-
ing block reference:

BLK   *blk;
SB    *sb;
char  *name;

SIMAPI_GetUCBBlockInfo(iinfo, &sb, &blk);
name = SIMAPI_GetBlockName(blk);

Note that BLK and SB are types defined in simAPI.h .

■ The following example uses the SIMAPI to get the label associated with output
number three of the current UCB reference.

BLK   *blk;
SB    *sb;
char  *name;

SIMAPI_GetUCBBlockInfo(iinfo, &sb, &blk);
name = SIMAPI_GetBlockOutputLabel(blk, 3);

14.2.9 Using the SIMAPI to Access and Modify Variables

The SIMAPI also provides users the ability to access variable information (%var and
Variable block), as well as to modify their values. This feature provides the same ca-
pability as the Runtime Variable Editing (RVE) feature used in ISIM.

All of the variables in the model are ordered in a particular numeric sequence from
the first variable to the last (to find the ID of the last variable, call the
SIMAPI_GetNumVars function). To keep compatibility with the graphical RVE inter-
face, the IDs for the variables range from 1 to the number of variables, instead of the
standard C language scheme of numbering items from 0.

The functions provided by this capability are:

long SIMAPI_GetNumVars(void);

Returns the number of variables (var block and %vars) used in the model,
regardless of their “editability.”

char *SIMAPI_GetVarName(long varnum);

Returns a character string representing the name of the variable #varnum
from the variable list.
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char *SIMAPI_GetVarPartition(long varnum);

Returns a character string representing the Xmath partition in which vari-
able #varnum was initialized.

long SIMAPI_IsVarEditable(long varnum);

Returns the editable status of variable #varnum.

char *SIMAPI_GetVarDatatypeName(long varnum);

Returns a string representing the name of the data type of variable #var-
num.

char *SIMAPI_GetVarUsertypeName(long varnum);

Returns a string representing the name of the user datatype of variable
#varnum. Returns NULL if no user type is assigned to that variable.

void SIMAPI_GetVarDimension(long varnum, long *dim);

Returns the dimensions of a selected variable. Any dimension not used by
the variable will be set to 0 (i.e. if the variable is a 3x4 array, this array will
be set to [3,4,0,0,0,0]). Scalars are treated as 1x1 arrays.

long SIMAPI_GetVarStorageSize(long varnum);

Returns the size (in bytes) needed to store a variable’s value.

SIMAPI_StorageType SIMAPI_GetVarStorageType(long varnum);

Returns the method by which multi-dimensional data is stored, either
BY_ROWS or BY_COLUMNS (which are defined in simapi_rve.h )

long SIMAPI_GetVarIndexByName(char *varname);

Returns the index of the variable whose name is varname.

long SIMAPI_GetVarData(long varnum, void *data, char *error_string);

Returns the value of the selected variable. The data pointer will be allo-
cated by this routine, and will be of size SIMAPI_GetVarStorageSize() .
The data will be of whatever type is specified by
SIMAPI_GetVarDatatypeNameblock .

long SIMAPI_PutVarData(long varnum, void *data);

Edits the selected variable. Note that variable edits are not completed until
the edit is flushed.
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The following example uses the SIMAPI to retrieve the name of the third variable:

char *varname;
varname = SIMAPI_GetVarName(3);

The following example uses the SIMAPI to change the variable of a known scalar
variable named myvar  to 20:

longvarnum;
double myval_value = 20.0;
longretval;
long*varlist;

varnum = SIMAPI_GetVarIndexByName("myvar");
   if (varname != 0) {
      retval = SIMAPI_PutVarData(varnum,&myval_value);
      if (retval != 0) {
         varlist = calloc(SIMAPI_GetNumVars () ,sizeof(long));
         varlist[varnum-1] = 1;
         retval = SIMAPI_FlushVars(varlist);
      }
   }

14.2.10 Using the SIMAPI to Access Simulation Debugging Information

The SIMAPI provides access to simulation debugging information, so that you can
monitor certain internal computations in a SystemBuild model during the simula-
tion.

The set of functions that provide access to the SystemBuild simulation signals are
prototyped in a header file simapi_debug.h . This file is located in the directory

long SIMAPI_FlushVars(long *varlist);

Flushes selected variables. This completes the editing process for these
variables. This routine expects a list of size SIMAPI_GetNumVars() . For
each entry in this list with a non-zero value, the corresponding variable
will be flushed (the edited value transferred to the simulation), assuming it
had previously been edited. After this operation is complete, the edit can
no longer be undone.

void SIMAPI_ResetVar(long varnum);

Cancels an edit on the selected variable. Undoes the effects of
SIMAPI_PutVarData . Note that once a variable edit has been flushed (by
SIMAPI_FlushVars ), it cannot be canceled.
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$SYSBLD/src . In order to access the debugging features, the header file simAPI.h
must be referenced in the C language UserCode Blocks, not simapi_debug.h .

The following is a list of the functions available through the debugging interface:

Functions to initialize and terminate debug data

SIMAPI_InitializeUserDebug(void);
SIMAPI_TerminateUserDebug(void);

Functions to return the dimensions of the SystemBuild model

SIMAPI_GetStateDimension          (int *n_states);
SIMAPI_GetImplicitOutputDimension (int *n_imp_outputs);
SIMAPI_GetExternalInputDimension  (int *n_ext_inputs);
SIMAPI_GetExternalOutputDimension (int *n_ext_outputs);

Functions to return signal names of the SystemBuild model

SIMAPI_GetStateName         (int state_index,  char **state_name);
SIMAPI_GetImplicitOutputName(int impout_index, char **impout_name);
SIMAPI_GetExternalInputName (int extinp_index, char **extinp_name);
SIMAPI_GetExternalOutputName(int extout_index, char **extout_name);

Functions to return signal values of the SystemBuild model

SIMAPI_GetStateValue (int state_index,  double *state_value);
SIMAPI_GetStateDerivativeValue(int state_index,  double *deriv_value);
SIMAPI_GetImplicitOutputValue (int impout_index, double *impout_value);
SIMAPI_GetExternalInputValue  (int extinp_index, double *extinp_value);
SIMAPI_GetExternalOutputValue (int extout_index, double *extout_value);

Functions to return the Jacobians of the SystemBuild model

SIMAPI_GetOperatingPointJacobian(int *iinfo, int *is_available,
double **OP_Jacobian);

SIMAPI_GetImplicitSolverJacobian(int *iinfo, int *is_available,
double **IS_Jacobian);

The dimensions of the Jacobian matrices are as follows:

The IS_Jacobian  is computed with respect to the variable ordering:

[states; imp_outputs]

OP_Jacobian: (n_imp_outputs)x(n_imp_outputs)

IS_Jacobian: (n_states + n_imp_outputs)x(n_states + n_imp_outputs)
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All matrices are stored in FORTRAN storage style, that is, columnwise vector stor-
age.

Function to return the simulation status of simexe

SIMAPI_GetSimStatus(int *iinfo, SimStatus *status);

Table 14-2 indicates the variables in the above function arguments that are inputs
or outputs to functions:

Note that all functions described in this section return an integer status value:

SIMAPI_OK = 0,             /* Call was successful */
SIMAPI_Unsuccesful = 1,    /* Call failed          */

14.2.11 Using and Managing the Debugging Access Functions

The following is a description on the usage of these functions. The function prefix
SIMAPI_  has been omitted from the descriptions for brevity.

Initialization and Termination Functions

■ The function InitializeUserDebug must be called in the INIT section of the
UserCode block before any other debugging SIMAPI calls. This call performs in-
ternal initialization of the debugging capability.

■ The function TerminateUserDebug must be called in the FINAL section of the
UserCode block to allow the simulator to terminate and re-initialize the debug-

TABLE 14-2

OUTPUTS: INPUTS:

deriv_value n_ext_inputs extinp_index

extinp_name n_ext_outputs extout_index

extout_name n_imp_outputs impout_index

extinp_value n_states impout_index

extout_value state_name is_available

iinfo state_value IS_Jacobian

impout_name n_ext_inputs state_index

impout_value status
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ging capabilities to prepare the debugging environment for subsequent debug
simulations.

Dimension Functions

The user first calls the Dimension access functions to get the dimensions of signals
in the model. The Dimension functions can be called anywhere, preferably in the
INIT section for efficiency. This is because the STATE and OUTPUTsections of the
UserCode block will be called many times throughout the simulation.

Name Functions

The Namefunctions are called to access the name of each signal in the system. Each
function is called with the integer index of the associated signal such that 0 <= i < n
where n is the dimension of the signal. Note that this addressing scheme is done in
C style. The memory allocation management for the string variables is done by the
simulator. The Namefunctions can be called anywhere, preferably in the INIT sec-
tion for efficiency. Note that the memory needed for the strings is allocated by the
simulator, which cleans it up at the end of the simulation, during the call to Termi-
nateUserDebug . You don’t need to free this memory.

State Functions

The GetStateValue function can be called in any section of the UserCode block.
To obtain state values during a converged integration algorithm pass, it should be
called in the OUTPUT section when the CONVERGED flag is true.

State Derivative Function

The GetStateDerivativeValue function should be called in the STATEsection of
the UserCode block to access the state derivatives during intermediate integration
algorithm evaluations.

Input Function

The GetExternalInputValue function can be called in the STATEor OUTPUTsec-
tion of the UserCode block.

Output Functions

The GetImplicitOutputValue , GetExternalOutputValue functions are called
in the OUTPUT section of the UserCode block.

Jacobian Functions

The functions GetOperatingPointJacobian and GetImplicitSolverJaco-
bian are used to access the Jacobian of the model during these computations. In
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the case of the Operating Point Jacobian, the matrix has dimensions
.

The dimension of the Implicit Solver Jacobian is ,where
nx is the number of states in the model, and nyimp is the number of implicit (alge-
braic loop) variables in the model. The number of algebraic loops in the model is de-
termined by the Simulation analyzer. See the analyze function for how to obtain
this value.

Computational Status Function

GetSimStatus is called to determine what the simulation executable is doing at
any given instant. This function provides information about the various computa-
tional modes of the simulator. The status flags are maintained in the following data
structure (see simapi_debug.h ):

typedef struct _SimStatus {
   SimulationMode simulationmode;
   StateUpdate    stateupdate;
}SimStatus;

The enumerated data structure SimulationMode  can assume the following values:

integrate, /* (= 0) Integration          Update maybe converged states */
continuous,/* (= 1) Continuous Subsystem Update                        */
discrete,  /* (= 2) Discrete   Subsystem Update                        */
trigger,   /* (= 3) Triggered  Subsystem Update                        */
jacobian,  /* (= 4) Jacobian             Update                        */
opoint,    /* (= 5) Operating Point      Update for algebraic loops    */
linearize, /* (= 6) Lin                  Update                        */
reset,     /* (= 7) Reset                Update                        */
converge,  /* (= 8) Integration          Update with converged states  */
monitor,   /* (= 9) Monit                Update                        */
event      /* (=10) Event Handle         Update                        */

The enumerated data structure StateUpdate  can assume the following values:

typedef enum
{  skip_xdot,
    compute_xdot,
 } StateUpdate;

Thus the SimulationMode data structure provides a snapshot of what the simula-
tor is doing at any given instant (i.e. function call to the UserCode block). Based on
this information, the user can decide which simulation data to access.

ny i m p( ) ny i m p( )×

nx ny i m p+( ) nx ny i m p+( )×
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14.2.12 Integration Algorithm Updates

Since the User debugging feature is only accessible through UserCode blocks, it is
very important to understand how SystemBuild executes UserCode blocks as well
as other blocks in the model.

There are several factors that influence how often a UserCode block will be executed
in a simulation:

Execution of State vs. Output Sections in the UserCode

1. Usually when a block is executed, it is called in two passes. In the first pass, the
outputs are updated. In the second pass, the state derivatives are updated. The
two updates cannot be done simultaneously because the outputs must be prop-
agated throughout the system before the state derivatives can be computed. It is
possible to have only an output update in order, for example, to post user out-
put values. Also, during numerical integration some output updates may be
skipped if they do not affect the dynamic part of the model.

One important issue in debugging a system with the UserCode block debugging
feature is that if the UserCode block does not have any states (number of states
is defined in the block form) then it will not be called during STATE updates.
Thus, in order to debug the integration algorithm internal steps for states and
derivatives, (i.e. derivative evaluations at non-converged time points) the User-
Code block must be created with at least one (dummy) state. This will ensure
that the block is in the appropriate chain of blocks to be executed during state
updates.

A second issue for debugging integration algorithm internal computations is as
follows: When the derivatives of the system are accessed, it is very important
that these values belong to the most recent computational pass. In other words,
the UserCode block should be the last block to be visited by the simulator dur-
ing the computation of the derivatives. To ensure this order of computation, the
UserCode block can be placed in the rightmost pane using a Sequencer block.
This will make sure that when the analyzer sorts the blocks, the UserCode block
is the last one to be executed.

2. Timing attributes.

The timing attribute of the parent SuperBlock is determined by its type: continuous,
discrete free-running, discrete enabled, triggered, or procedure.
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Continuous blocks are executed:

● At initialization (see next section)

● During numerical integration

● When state events occur

● When posting user output values

All other blocks are executed:

● At initialization (see next section)

● At the next sample time based on sample period, trigger values, etc.

3. Initialization

The initialization type is set by the “initmode” flag, and it can take the values
[0-4]. The default value is initmode=3.

a. Type 0 initialization

Only the continuous subsystems are initialized.The UserCode block is exe-
cuted once to initialize all system outputs.This is called the INIT call. The
UserCode block can also be executed several more times with other calls
(STATE, OUTPUT) by a Newton-Raphson solver in case the system includes
ImplicitUserCode block or algebraic loops, so that a steady-state operating
point can be found. Discrete subsystems outputs are left at -sqrt(eps).

b. Type 1 initialization

Continuous and discrete subsystems are executed once. Continuous sub-
systems (with output updates only), may be executed more than once if the
system is implicit.

c. Type 2 initialization

Continuous, discrete, enabled, and triggered subsystems are executed
once. Continuous subsystems (with output updates only), maybe executed
more than once if the system is implicit.

d. Type 3 initialization

This is the same initialization type as for Type 2 except that outputs are
propagated instantaneously between subsystems.
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e. Type 4 initialization

This is the same initialization type as for Type 3 except that the Newton
solver is disabled. This guarantees that the continuous subsystem is exe-
cuted only once. However, after this initialization, the algebraic loops and
ImplicitUserCode block derivatives (or states) remain uninitialized, with
their values left at -sqrt(eps).

4. Numerical Integration Algorithm

The integration algorithm can take the values [1-9].

Below is a detailed explanation of all model updates done for each integrator.
Converged updates are indicated in UserCode blocks by the flag iinfo[13] = 1.
Otherwise it is 0. Note also that some blocks may be skipped for output updates
during integration if they do not affect the dynamic part of the model. The nota-
tion is:

ialg = 1, Fixed-step Euler

OUTPUT: t = tk,   converged state values
STATE : t = tk,   converged state values
OUTPUT: t = tk+h, user output posting

ialg = 2, Fixed-step RK2

OUTPUT: t = tk,   converged state values
STATE : t = tk,   converged state values
OUTPUT: t = tk+h, inside integration
STATE : t = tk+h, inside integration
OUTPUT: t = tk+h, user output posting

ialg = 3, Fixed-step RK4

OUTPUT: t = tk,     converged state values
STATE : t = tk,     converged state values
OUTPUT: t = tk+h/2, inside integration
STATE : t = tk+h/2, inside integration
OUTPUT: t = tk+h/2, inside integration
STATE : t = tk+h/2, inside integration

OUTPUT: Output Update.

STATE: State Update.

t: Time.

h: Current step size taken by the integration algorithm.
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OUTPUT: t = tk+h,   inside integration
STATE : t = tk+h,   inside integration
OUTPUT: t = tk+h,   user output posting

ialg = 4 or 5, Fixed and variable Kutta-Merson

OUTPUT: t = tk, converged state values
STATE : t = tk, converged state values
OUTPUT: t = tk+h/3, inside integration
STATE : t = tk+h/3, inside integration
OUTPUT: t = tk+h/3, inside integration
STATE : t = tk+h/3, inside integration
OUTPUT: t = tk+h/2, inside integration
STATE : t = tk+h/2, inside integration
OUTPUT: t = tk+h, inside integration
STATE : t = tk+h, inside integration
OUTPUT: t = tk+h, user output posting

ialg = 6, DASSL

repeated sequence:

OUTPUT: t = tk+h, inside predictor iterations
STATE : t = tk+h, inside predictor iterations
OUTPUT: t = tk+h, inside jacobian update
STATE : t = tk+h, inside jacobian update

corrector update:

OUTPUT: t = tk+h, corrector update if not converged
STATE : t = tk+h, corrector update if not converged

user outputs:

 OUTPUT: t = tk+h, user output posting

ialg = 7, Adams-Bashforth-Moulton

OUTPUT: t = tk+h, predictor update
STATE : t = tk+h, predictor update
OUTPUT: t = tk+h, corrector update
STATE : t = tk+h, corrector update
OUTPUT: t = tk+h, interpolate outputs
STATE : t = tk+h, interpolate outputs
OUTPUT: t = tk+h, user output posting
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ialg = 8, Quicksim

OUTPUT: t = tk,   inside integration
STATE : t = tk,   inside integration
OUTPUT: t = tk+h, user output posting

ialg = 9, ODASSL and ialg=10, GEARS

Identical to DASSL

The timestep tk  is chosen at every point by computing the minimum of:

● difference between the current time and the next discrete, triggered, or en-
abled event

● difference between the current time and the next external output time de-
termined by the user time vector.

● dtmax

● dtout

Note that the variable-step integrators may use a smaller internal timestep.

Other Issues and Notes

■ The time steps taken by the variable-step numerical integration algorithms are
limited by the user output points. The algorithms may take smaller steps when-
ever necessary (i.e. in order to satisfy the local error tolerance criterion). How-
ever, these intermediate converged values are not necessarily posted in the
user’s output vector during simulation from Xmath or the Editor. The debugging
feature provides access to these values.

■ Note the following for the computation of the operating point Jacobian matrix:

● The Jacobian is computed only for algebraic loops associated with continu-
ous subsystems,

● The Jacobian computation is skipped when the sim option initmode=4.

If the function SIMAPI_GetOperatingPointJacobian is used for cases when
the Jacobian is not computed, or not available due to one of the above cases, a
program crash, or garbage output may result.
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■ Note the following for the computation of the Implicit Solver Jacobian matrix:

The Jacobian is only computed for the two Implicit Stiff Solver integration algo-
rithms, ialg = 6 (DASSL) and ialg = 9 (ODASSL).

The symbolic form of the Jacobian computed by DASSL and ODASSL is:

EQ. 14-26

where , and c is an iteration constant determined by the Implicit
Solver.

14.2.13 SIMAPI Debug UserCode Block Example

An example UserCode block that illustrates the usage of the SIMAPI debugging fea-
tures is provided with the MATRIXX installation. In order to run the example, per-
form the following steps:

1. Copy the file usrdebug.c  to your local directory.

copyfile "$SYSBLD/src/usrdebug.c"

2. Load and edit a SystemBuild model you would like to debug. In the editor, drag
and drop a Sequencer block from the Software Construct palette to the model.
Place the Sequencer to the right of all the blocks in the SuperBlock.

3. Drag and drop a UserCode block from the User Programmed palette, to the
right of the Sequencer. This will ensure that the UserCode block is the last
block to execute in the block update sequence.

4. In the UserCode block dialog, set the number of inputs, outputs and states
equal to one. Even though the UserCode block does not have any states, setting
the number of states equal to one will ensure that the block is executed during
the state update pass of the simulator.

● In the File Name field type usrdebug.c . In the Function Name field type
usrdebug .

● Set the number of Integer Parameters to 8. The dialog will now display an
array of eight zeros as the default values of the integer parameters.

● Set the values of the integer parameters as shown in Table 14-3 on page
14-29 where the integer parameters array is referred as ipar[1:8]). The table
also shows the files that will be created for the purpose of writing the rele-
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vant data. Because the IPAR values are all 1, any easy way to enter them is
to type ones(1,8)  in the Integer Parameters field. Click OK.

5. Simulate your model.

6. Examine the data in the files listed in Table 14-3.

SIMAPI Debugging Notes:

■ To turn off the debugging of a particular type of variable, set the appropriate
ipar[] element to zero.

■ For the contents of each file and the data format used for writing the results to
the files, please see the relevant fprintf statements in the source code us-
rdebug.c  source code.

■ For some models with a large number of states and many steps of simulations,
some of the data files can become very large. Implicit Solver Jacobians can espe-
cially become very large due to repeated evaluations of the Jacobian inside the
Implicit Solvers (ialg= 6 and 9).

■ The example provided in usrdebug.c is an application adequate for users who
would like to write the simulation data to a file and inspect the results. For more
advanced applications, users are encouraged to read and freely re-use the
source code of usrdebug.c for writing their own UserCode block debugging ap-
plications.

TABLE 14-3 IPAR Values

Parameter Purpose File

ipar[1] = 1 Debugging feature for the UserCode block sysinfo.dat

ipar[2] = 1 Enables state data states.dat

ipar[3] = 1 Enables state derivative data derivs.dat

ipar[4] = 1 Enables implicit output data impouts.dat

ipar[5] = 1 Enables external input data extinps.dat

ipar[6] = 1 Enables external output data extouts.dat

ipar[7] = 1 Enables Operating Point Jacobian data opjac.dat

ipar[8] = 1 Enables Implicit Solver Jacobian data isjac.dat
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14.2.14 USR01 and IUSR01 Template

UserCode function templates are furnished in the $SYSBLD/src subdirectory. Copy
the appropriate file to your working directory and insert your custom simulation al-
gorithms in the example function.

The template consists of a single function prototype with sections designed to con-
tain the computational algorithms associated with the seven distinct modes of oper-
ation: INIT , STATE, OUTPUT, LIN , MONIT, EVENT, and LAST.

Execution of each section is controlled by flags set by the simulator in the IINFO
vector, as described in Table 14-4 on page 14-33. The sequence and the modes of
operation the UserCode function is required to compute will depend on the informa-
tion specified in the block Parameters tab.

INIT Mode

INIT mode is performed once at the start of a simulation. During the INIT mode call,
the value of the IINFO(2) flag is set to 1. If the UCB reference has states, the UCB
will be called in INIT mode twice; once while executing OUTPUT mode, and again
while executing STATE mode. If the UCB reference does not have states, the UCB
will be called in INIT mode only once (while executing OUTPUT state).

Typically no action is required in the INIT section because the initial conditions de-
fined in the UCB parameter dialog are automatically copied into X, the state vector.
However, the state vector can be modified to override these automatically loaded val-
ues during this initialization.

If the LIN mode is used in your UserCode function, set the value of the IINFO(5)
flag to 1 during the INIT  call.

Other tasks can be performed at this time, such as opening files and allocating
memory. Note that if the UCB performing these tasks has states, it is your responsi-
bility to make sure that these operations occur only once (even though the UCB will
be called in INIT mode twice). To ensure a single operation only, call these tasks
only when both INIT and OUTPUT mode are active.

STATE Mode

STATE mode is performed to compute xdot , the state derivatives for the continuous
case, x_next for the discrete case, or the local residual error for implicit equations.
The result is returned in the F argument. During the State mode call, the value of
the IINFO(3)  flag is set to 1.

This call is only made when the block is specified with states.
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OUTPUT Mode

OUTPUT mode is required, because UCBs must have one or more output signals.
During the OUTPUT mode call, the value of the IINFO(4)  flag is set to 1.

In OUTPUTmode, your code should compute the output vector in the Y argument.
Be careful to assert every output of the block at every cycle, not just when the value
changes.

MONIT Mode

MONIT mode is required, only for blocks that have state events. Compute the moni-
tor function in F where the zeros define the locations of possible state event transi-
tions. During the MONIT mode call, the value of the IINFO(6)  flag is set to 1.

EVENT Mode

EVENT mode is required only for blocks that have state events when a zero crossing
is found by the integrator. At this point the integration is halted and you may reini-
tialize the state values (for explicit) or state and derivative values (for implicit
blocks). During the EVENTmode call, the value of the IINFO(7) flag is set to the ith

zero crossing detected during the MONIT mode calls.

LIN Mode

This optional mode allows you to explicitly calculate the Jacobian linearization of
state and output equations. During the LIN mode call, the value of the IINFO(4)
flag is set to 1.

By default, a double-sided finite difference linearization is always performed by the
simulator linearization. However, you can use an explicit linearization calculation
and insert a custom algorithm.

To enable the UCB to call your function with the LIN flag, set the lin flag,
IINFO(5) = 1 during the INIT mode. This will instruct the simulator to call your
UserCode function to evaluate the following two expressions in the F and Y argu-
ments, whenever a linearization is needed:

EQ. 14-27

EQ. 14-28
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LAST Mode

This optional mode is called once, at the completion of simulation. During the LAST
mode call, the value of the IINFO(1)  flag is set to 2.

This mode allows you to “close your books” on the simulation; e.g., by closing files,
deallocating memory, and other housekeeping. No parameters are passed with this
mode.

14.2.15 Explicit UserCode Function Calling Arguments

Refer to the listing of the usr01 or iusr01 templates for more information. The ar-
guments for the explicit UserCode function are:

USR(IINFO, RINFO, U, NU, X, F, NX, Y, NY, RPAR, IPAR)

and for the implicit UserCode function, they are:

IUSR(IINFO, RINFO, U, NU, X, XD, NX, F, FC, Y, NY, RPAR, IPAR)

Where NU, NX, and NY are the dimensions of the respective values. It is important
that during each call mode, only specific arguments that have write access are mod-
ified.

The meaning of U, Y, X, and F varies with the type of call and can be determined by
values in IINFO .

The parameter vectors RPAR(real) and IPAR (integer) let you pass parameters to
your model from the block dialog. The values in RPARand IPAR, as well as any ini-
tial state values, x0, can be changed in the block parameter dialog, so that a given
UCB can be reused in a model, with different parameters. The RPAR, IPAR, and
Initial Conditions parameters can be entered as %Variables. This lets you

NU = Number of inputs

NX = Number of states

NY = Number of outputs

RPAR = general vector of floating point parameters initialized by the simulator
with the values entered from the parameter dialog and dimensioned
NRP, which is found in IINFO(10)

IPAR = general vector of integer parameters that the simulator initializes with
the values entered from the parameter dialog and dimensioned NIP,
which is found in IINFO (9)
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modify the routine logic and equation coefficients between simulations without hav-
ing to re-edit the model.

The tables in the following pages define the types of variables you will encounter us-
ing UCBs. Table 14-4 on page 14-33 defines the IINFO vector. Table 14-5 on page
14-34 defines the RINFO vector, and Table 14-6 on page 14-35 defines all the Mode
parameters associated by all the modes of the UCBs.

14.2.16 UserCode Function Arguments

IINFO is an integer array that contains information flags used for communication
with the simulation engine. Except as noted in the discussion of INIT mode on
page 14-30, the UserCode function may only modify the first element of IINFO
which is a status flag; modifying other values is illegal and may produce unpredict-
able results. As in the rest of this chapter, in the table, FORTRAN conventions are
used in indexing into IINFO . For C code, the index starts from zero.

TABLE 14-4  IINFO Vector

IINFO( 1)=0, -1, -2 Error Flag {0=Normal, -1=Warning, -2=Error}.

IINFO( 2)=1,2 INIT or LAST mode. Initialize (1 = First call, 2 = Last
call).

IINFO( 3)=1 STATE mode. Compute state derivatives in F.

IINFO( 4)=1 OUTPUT mode. Compute outputs in Y.

IINFO( 5)=1 LIN  mode. Compute linearization in F and Y.

IINFO( 6)=1 MONITORmode. Compute monitor function for state
event detection in F.

IINFO( 7)=I EVENT mode. Handle ith state event transition.

IINFO( 8)=NSE Number of state events.

IINFO( 9)=NIP Number of Integer Parameter Values.

IINFO(10)=NRP Number of Real Parameter Values.

IINFO(11)=NC Number of constraint equations (implicit UCB only).

IINFO(12)=1 Inside Linearization Process (Jacobian).

IINFO(13)=1 Inside SIM Initialization Process (TIME=0).
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RINFO is a real array that contains timing and related information for the called rou-
tine. UserCode may not modify any values in RINFO.

IINFO(14)=1 Update with converged state values.

IINFO(15)=1 Integration Algorithm (IALG ).

TABLE 14-5  RINFO Vector

Continuous Discrete Triggered

RINFO(1) Current Time Current Time Current Time

RINFO(2) 0.0 Sample Interval 1.0

RINFO(3) 0.0 Initial Time Skew 0.0

RINFO(4) 0.0 0.0 Timing Requirement

RINFO(5) Sim Start Time Sim Start Time Sim Start Time

RINFO(6) Sim End Time Sim End Time Sim End Time

RINFO(7) reltol reltol reltol

TABLE 14-4  IINFO Vector (Continued)
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TABLE 14-6 Mode Parameters

Mode Name Dimen Access Explicit UCB Implicit UCB

INIT U NU RO Input vector Input vector

Y NY -- Output vector Output vector

X NX RW State vector State vector

XD NX RW -- Derivatives

F -- -- -- --

FC -- -- -- --

STATE U NU RO Input vector Input vector

Y -- -- -- --

X NX RO State vector State vector

XD NX RO -- Derivatives

F NX WO State derivatives Residual error

FC NC WO -- Constraint eqn

OUTPUT U NU RO Input vector Input vector

Y NY WO Output vector Output vector

X NX RO State vector State vector

XD NX RO -- Derivatives

F -- -- -- --

FC -- -- -- --

MONIT U NU RO Input vector

Y -- -- --

X NX RO State vector State vector

XD NX RO -- Derivatives

F NSE WO Monitor function Monitor function

FC -- -- -- --
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Definitions:

EQ. 14-29

EQ. 14-30

EQ. 14-31

where , , and
, ,  correspond to the current operating point.

EVENT U NU RO Input vector Input vector

Y -- -- -- --

X NX RW State vector State vector

XD NX RW -- Derivatives

F -- -- -- --

FC -- -- -- --

LIN U 2*NU RO [Uop;dU] [Uop;dU ]

Y NY WO dG dG

X 2*NX RO [Xop;dX] [Xop;dX]

XD NX RO -- [XDop; dXD]

F NX WO dF dF

Y NY WO dG dG

LAST No provision is made for passing parameters with this mode.

TABLE 14-6 Mode Parameters  (Continued)

Mode Name Dimen Access Explicit UCB Implicit UCB
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df c

f c∂
x∂

------- dx
f c∂
u∂

------- du
f c∂
ẋ∂
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xo p ẋo p uo p



SystemBuild User’s Guide UserCode Blocks

14-37

14

Access refers to what values the UCB is allowed to read or modify.

RO = Read only, do not modify
WO = Write only, must be calculated
RW = Read or write, may optionally modify

14.3 Variable Interface UserCode Blocks

This section discusses the variable interface UserCode block capability. It should
only be used if your ultimate goal is generated code, because its sole benefit is en-
hanced code efficiency.

14.3.1 Overview

Although SystemBuild UCB code (Section 14.2.14 on page 14-30) cannot be used in
AutoCode, handwritten UCB code intended to be linked with AutoCode can be
linked into a SystemBuild simulation if the user code conforms to a standard inter-
face. A standard UCB interface can be either Fixed  or Variable .

A Fixed interface UCB conforms to a required set of function arguments specified in
the AutoCode Reference. In the Fixed interface code generation paradigm for UCBs,
all signals passed into the UserCode block are converted to float; at the completion
of the user code task, floats are cast to the output datatype specified in the block di-
agram.

The Variable interface accommodates mixed datatypes and optional arguments. It
passes the input signal datatypes and output datatypes specified in the UserCode
block dialog. In addition, signal labels and names from the dialog will influence UCB
inputs and outputs (to produce scalars or arrays) just as they do for other blocks.
Finally, although the variable interface makes a strictly ordered call to the UCB, it
allows arguments to be optional, that is, it does not call or generate code for param-
eters that are not used.

With these capabilities it is possible for the same handwritten code to be used in
both SystemBuild and AutoCode simulations. Because the code is written for Auto-
Code simulation, you must write a C wrapper that will allow the SystemBuild simu-
lator to interface with the fixed calling sequence that AutoCode expects. The UCB
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will call the wrapper, which will in turn call the handwritten code. Figure 14-3 illus-
trates the SystemBuild and AutoCode calling sequence for user code.

To use a variable interface UCB for simulation, you must:

■ Specify the variable interface in the UCB dialog (Section 14.3.4).

■ Create user code that conforms to the specification within the UserCode block,
including function name, inputs, outputs, etcetera.

■ Write a C wrapper that calls the user code.

14.3.2 Using a Wrapper so that SystemBuild Can Simulate Code Written for AutoCode

As depicted in Figure 14-3, the UCB must call a wrapper that then calls the user
code. A simple example of a single file that includes a wrapper and the user code is
available in $SYSBLD/examples/variable_ucb/sample/samp_vucb.c . This
code can be used for both SystemBuild and AutoCode. Figure 14-4 on page 14-39
highlights portions that are of particular interest.

AutoCode Simulation

SystemBuild Simulation

Generated Code

User Code

usr01(...)
{

}

Simulator

usr01(...)

Wrapper

void usr01(...)
{

}

  usr01_code( )

FIGURE 14-3 SystemBuild and AutoCode Share User Code

call to execute
user code

#ifdef SBUSER
void usr01_code
#else
void usr01
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#ifdef SBUSER
#include "matsrc.h"
#include <math.h>

#if (FC_)
#define usr01 usr01_
#endif
#if (PC || VAX)
#define usr01 USR01
#endif

:

void usr01 (iinfo,rinfo, u,nu, x,f,nx, y,ny, rpar,ipar)
int    iinfo[], ipar[], *nu, *nx, *ny;
double rinfo[], rpar[], u[], x[], f[], y[];
{
  :
  :
}

#ifdef SBUSER
/* re-declare RT_INTEGER to match SIM integer type */
#undef RT_INTEGER
#define RT_INTEGER int
#endif

#ifdef SBUSER
/* change the name of the usercode when we are in
** SIM so name change is unnecessary in model
**/
void usr01_code
#else
void usr01
#endif
    (
       RT_FLOAT    input_1,
       RT_FLOAT    input_2,
       RT_INTEGER  int_inputs[2],
       RT_INTEGER *out_value,
       RT_INTEGER *IP,
       RT_INTEGER  nIP
    )
{
  RT_INTEGER i;
  RT_FLOAT   tmp = input_1 + input_2;

  :
  :

  *out_value = (RT_INTEGER)tmp;

}

FIGURE 14-4 Excerpts from samp_vucb.c

#ifdef SBUSER conditions

In simulation, the wrapper refers

UCB WRAPPER

USER CODE

In AutoCode, wrapper code is
ignored and the user code is

void usr01 defines the
interface for the simulation
in SystemBuild.

referred to directly as usr01.

are in effect during
SystemBuild simulation.

to the user code as usr01_code.

The arguments to the user code
correspond to the specification
within the UserCode block. See
the AutoCode Reference for
details on these arguments.
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14.3.3 Writing a Wrapper

The purpose of the wrapper is to interface the sim UserCode interface to your vari-
able interface user code. The wrapper must convert the input and output data from
the sim Usercode interface to match the variable interface user code. Please, exam-
ine the sample files test_vucb.c and samp_vucb.c ; each contains a wrapper for
UserCode functions. To copy the files to your current working directory, issue the
following commands from the Xmath command area:

copyfile "$SYSBLD/examples/variable_ucb/test/test_vucb.c"
copyfile "$SYSBLD/examples/variable_ucb/sample/samp_vucb.c"

The wrapper must perform the following tasks:

1. Create local variables that match the datatype and shape of variable interface
UCB inputs and outputs.

2. Convert the data from the SIM interface to the local variables (see Converting
Data From the SIM Interface).

3. Initialize the INFO status record (if needed) to indicate the appropriate phase
(INIT, OUTPUT or STATE).

4. Call the variable interface UserCode using the local variables as arguments to
the function.

5. Convert the local variables representing the output data back into the sim in-
terface.

6. Reflect any error code (if using the INFO status record) back into the sim inter-
face.

Converting Data From the SIM Interface

The sim interface presents all input and output data as floating-point data. Since
the variable interface UserCode will most likely have datatypes other than float, the
sim  data must be converted to the appropriate datatype.

To perform datatype conversion, use the AutoCode SA Library header files and some
of the macros defined within them. Refer to the AutoCode Reference manual and the



SystemBuild User’s Guide UserCode Blocks

14-41

14

SA Library source files for additional discussion. Several of these macros are useful
for conversion, in particular:

Converting Data Back to the SIM Interface

After executing the variable interface UserCode, you must convert the output data
back into the SIM interface. This implies converting the output data and copying it
into the SIM interface. It is acceptable to typecast the integer and logical values into
the SIM interface. However, for fixed-point data, you must use a conversion routine.
Refer to the SA Library files for various conversion macros. The following conversion
macros can be useful for this purpose:

14.3.4 Specifying the Variable Interface

The UserCode block parameters are fully documented in the online help. To see this
information, type help usercode from the Xmath command line, or press the Help
button from the UserCode block dialog.

Setting Variable Interface Parameters

To use the Variable Interface, go to the Parameters tab and set the parameter Inter-
face Type to Variable. The Time Argument and Info Argument fields are enabled
when the Interface Type is set to Variable; choose the appropriate action (Yes or No).

Specifying Datatypes

Input datatypes are inherited from source blocks. Output datatypes are specified on
the UCB Outputs tab.

I_Fpr() Conversion from floating-point to Integer (using protection and
rounding).

SB04_Fpr() Conversion from floating-point to SignedByte, radix 04.

ULn02_Fpr() Conversion from floating-point to UnsignedLong radix -02.

F_SS03() Conversion from SignedShort radix 3 to floating-point.

F_UB06() Conversion from UnsignedByte radix 6 to floating-point.
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Specifying Input Shapes

Input labels and names determine the structure of input data to the user code. See
Creating Sequential Names for Vectors or Matrices. The precedence for creating the
shape (scalar or vector) is determined by:

1. Input names (specified on the UCB Inputs tab). These override names inherited
from the input signal.

2. Output names (inherited from the signal source block).

3. Output labels (inherited from the signal source block).

4. UCB block name.

Specifying Output Shapes

Output labels and names determine the structure of the output data from the user
code, as explained in Creating Sequential Names for Vectors or Matrices. The prece-
dence for creating the shape (scalar or vector) is determined by:

1. Output names (specified on the UCB Outputs tab).

2. Output labels (specified on the UCB Outputs tab).

3. UCB block name

14.3.5 Running a Variable Interface Example

Use the following commands to move the example to your current working directory.

copyfile "$SYSBLD/examples/variable_ucb/test/test_vucb.cat"
copyfile "$SYSBLD/examples/variable_ucb/test/test_vucb.c"

Simulating the Variable Interface UCB in SystemBuild

1. Load the file test_vucb.cat . This file contains both model data and Xmath
variables.

2. Open the SuperBlock test_vucb. On the Parameters tab, make the Time Vector t
and the Input Variable u. Give the output vector the name tv_sb .

3. Click Plot Outputs and Typecheck, then hit OK. The simulation results will be
shown in a strip plot, and saved to the variable tv_sb .
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Generating Code for a Variable Interface UCB in SystemBuild

In the SystemBuild Catalog Browser, select the SuperBlock test_vucb. To generated
code, select Tools→AutoCode, then click OK.

After generating the code, you can compare the generated code outputs with the
simulation outputs. For instructions on compiling and linking the user code, see the
section titled "Standalone Simulation" in the AutoCode User’s Guide.

14.4 UCB Programming Considerations

Several details must be considered when programming UCB subroutines:

■ Take care not to overwrite areas of memory used by the simulator executable.
The names of any subroutines you add, as well as any COMMONblocks, must be
different from those already used in the product. To ensure uniqueness, prefix
all your global variables and internal function names with ZZ, which is never
used inside the simulation engine.

Use function names that begin with usr or iusr to avoid conflict with other
symbols defined in the simulation engine.

■ If using dynamic memory allocation/deallocation, make sure that your code
does not write beyond the allocated buffer; write into a buffer that has been
deallocated, etc.

■ If a UCB is included in a system more than once, it must use static memory very
carefully, for each instance of an identically-named UCB consists of another call
to the user-supplied code, with potentially different parameters, but the same
static variables.

■ If you have existing code that evaluates derivative and output equations for
other integration packages, it is probably best to insert a call to that routine in a
UCB, rather than writing the equations directly into the UCB. In that way your
equations will be usable under both SystemBuild and your other packages.

14.5 Building, Linking and Debugging UCBs

The simulator is responsible for reading information about UserCode from the
model and other sources, then taking that information and collecting, compiling
and executing UserCode. This section explains this process. As much as possible,
the discussion will be platform and language independent, but differences between
platforms and languages are noted.
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After the simulator has completed the UCB compilation process, all of the user code
will reside in a shared library (on Windows, a Dynamic Link Library) with the name
simucb.ext , where the extension is platform specific. This is referred to as the
UCB shared library.

CAUTION: Before MATRIXX Version 6.0, new simulator executables (sim-
exe.lnx on UNIX systems or simexe.exe on PC systems) were cre-
ated as the end result of this process.

You must remove old versions of a rebuilt simulator executable
before using any of the following guidelines. Failure to do this
will cause unexpected runtime failures.

14.5.1 Collecting UserCode Files

UserCode files can be specified from the UserCode block parameter tab, with the
keywords csource and fsource , in the makefile itself, or with the ucbcodeloc
simulation option. This section discusses each method.

NOTE: If you have both C and FORTRAN UCB source files, make sure that they
do not have the same root name (ignoring the extension). For example, it
is an error to have UCB source files myucb.c and myucb.f in the same
simulation.

UCB Block Parameter Form

The primary location for entering a file name is the UCB block parameter form. This
filename may be a simple file name (i.e. usrcode.c ), or, it may contain a relative
pathname (for example, usrcodedir/usrcode.c on UNIX systems), a complete
path name (including a drive letter on Windows systems), or environmental vari-
ables (for example, %ucbcodeloc%\usrcode.c on a Windows system). Only envi-
ronmental variables that exist before SystemBuild is invoked will be recognized by
the simulator.

CSOURCE and FSOURCE

Additional source code files may be specified using csource (for C language files) and
fsource (for FORTRAN language files). csource and fsource files may be specified
with the linksim  function or the SETSBDEFAULT command. For example,

linksim ("top",{csource="ucb1.c ucb2.c",fsource="ucb3.f"});
SETSBDEFAULT {csource="ucb14.c ucb15.c", fsource="ucb11.f"}
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If csource or fsource is set using SETSBDEFAULT, the file names will be combined
with those on the linksim  command line to create the file list.

Specifying Sources in the makefile

When the simulator creates the UCB shared library, it uses a platform-specific
makefile. This makefile resides at $SYSBLD/src/makefile for UNIX systems, and
%SYSBLD%\src\makeucb.mk for PC systems. It may be copied into the local project
directory, and if it exists there, the simulator will use the local makefile instead of
the default in the standard location.

All makefiles have a section at the top that is safe to modify. Modifications made
outside this area can corrupt the UCB shared library creation process.

UNIX

For UNIX systems, simply list any additional C language source code files at the end
of the line that reads:

CSOURCES =

Add any FORTRAN language source code files at the end of the line that reads:

FSOURCES =

Windows

For PC systems, add all source code files (C or FORTRAN) to the line that reads:

SOURCES =

Reusing Sources from the Previous Simulation

If a UCB shared library exists in the project directory before this process starts, the
simulator will attempt to include all of the objects in the previously existing shared
library in the new one. This makes it possible to quickly switch between different
models that contain different UCBs.

Specifying Another Location for UCB Code

The sim command line option ucbcodeloc may be used to specify a location for
user code different than the local directory. If this option is supplied by the user, the
simulator will assume that all UCB source files, as well as the UCB shared library,
will be located in the directory specified with the ucbcodeloc option (except any
source code file that has a complete path name as its specification, in which case,
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the simulator will look for the file there). This location may be set using SETSBDE-
FAULT. ucbcodeloc is designed to support multiple engineers accessing the same
infrequently changed shared UCB library so that team members don’t need to keep
local copies of the entire team's UCB source.

In this case, all team members should have the following line in their startup.ms
file.

setsbdefault {ucbcodeloc="/path_to_team_UCB_code"}

14.5.2 Compiling and Linking User Code

The simulator compiles each of the identified source code files (if necessary) using
make on all platforms (with a different, platform dependent, make file on each plat-
form). Once the make facility has determined that each source code file has been
successfully compiled, the source code objects are linked into the UCB shared li-
brary. Any compile or link errors will be reported by the simulator, which will then
terminate.

Windows

On Windows platforms, a Dynamic Link Library (DLL) is created. Because a DLL is a
name-resolved stand-alone entity, all symbols referred to in the user's code must
exist in the DLL before it can link. If a UCB calls a user-supplied utility function
that function has not been made available to the simulator in one of the ways de-
scribed above, the DLL will fail to link.

UNIX

On UNIX platforms, a shared library is created; shared libraries are not name re-
solved. Although the shared library is not expected to link completely, it is your re-
sponsibility to make sure that all user-supplied code is contained in the shared
library. The simulator will verify that all UCB routines are included in this library,
but it cannot verify that user-supplied utility routines are included in the shared li-
brary. If, during simulation, UserCode attempts to call a non-existent function, the
simulator will immediately stop executing with a dynamic linker error.

Supported Compilers

ISI tests the UCB capabilities of the simulator using the compilers (and compiler
versions) that are officially supported by ISI. If an unsupported compiler is used to
compile and link UCB shared libraries, ISI cannot assist you with problems encoun-
tered while compiling code, creating the UCB shared library, or any run-time prob-
lems. The list of supported compilers is available in the MATRIXX System
Administrator's Guide, or on our website at http://www.isi.com .



SystemBuild User’s Guide UserCode Blocks

14-47

14

14.5.3 Debugging User Code

Follow these guidelines when debugging user code:

1. To debug user code in the simulation environment, the code must first be com-
piled and linked with debug information.

UNIX

On UNIX platforms, the code is compiled and linked with the debug information
automatically.

Windows

On Windows platforms, you will need to copy the make file, makeucb.mk into
the local project directory (even if using the ucbcodeloc option). You can do
this with the following Xmath call:

copyfile "$SYSBLD/bin/makeucb.mk"

Edit makeucb.mk with a text editor, and make sure the top portion of the make-
file contains the line:

DBG = Yes

Next, create the UCB shared library using the linksim command. This will
guarantee that when you eventually enter the debugger, that the UCB shared li-
brary will already be created and loaded into the simulator. For more informa-
tion on the linksim  command, consult the online help.

2. From the Xmath command area, type the following command:

debug simexe

3. Call the sim function normally, either from the Xmath command line, or the
SystemBuild editor Tools menu pulldown. Once the simulator is invoked, a GUI
dialog will appear.

CAUTION: Do not hit OK in this dialog until the debugging session is
ready for it (step 5).

Windows

On PC systems, an OS dialog will also come up, notifying you that a debug ex-
ception has occurred, and asking if you would like to invoke the debugging envi-
ronment. Do so.
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UNIX

On UNIX systems, you will have to bring up the debugger and attach it to the
running process. Return to the Xmath GUI dialog, and take note of the com-
mand listed in the window. Execute that command at the OS command line.
This will invoke the debugger, and attach it to the simulation process.

4. Once in the debugging environment, do any initialization you like (setting break
points, data watch points, etc.).

NOTE: On SunOS and Solaris systems, it is important that you also execute
the command:

ignore USR1

Remember that the names of the functions directly called by the simulator will
generally have a trailing underscore (UNIX systems) or will be in all capital let-
ters (Windows systems) due to the mixed C/FORTRAN language support in the
simulator.

5. After the debugging session is initialized, make sure that the simulator is run-
ning (by using the cont command on most UNIX debuggers, or pressing the F5
key in the Windows environment).

6. Once the simulator is running, you may hit OK in the Xmath GUI dialog. At this
point the simulator will resume, and the debugging session may continue.

Because the simulator does not terminate at the end of each simulation, you can
keep the debugging session open through multiple subsequent simulations, pro-
vided the simulator does not crash, the command undefine simexe is not issued
from the Xmath command area, and Xmath remains running.

14.6 Posting Error Indications

Use the ISI-supplied function stdwrt in your C or FORTRAN UCB to write mes-
sages to the Xmath window. stdwrt is a void function that takes one string argu-
ment containing the message to be displayed in Xmath.

void stdwrt(char * message)

The prototype for this function is in the file $ISIHOME/sysbld/src/matsrc/h . Be
sure to include this file in your C language file. Here's a simple example of its use:

#include "matsrc.h"
int a = 1;
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int b = 2;
    if (a != b)
    stdwrt("The Two values are not equal\n");

Notice that a newline character ends the string argument. stdwrt does not auto-
matically add newline characters.

If you must write messages from your own FORTRAN subroutine, use logical I/O
units numbered 99 or higher. Here’s a simple example:

CHARACTER*80 BUFFER
WRITE(BUFFER,10) RPAR(4),IPAR(3)
10 FORMAT('RPAR(4)=',1PE12.4,' and IPAR(3)=',I2)
CALL STDWRT(BUFFER)

At simulation time, extensive error checking is performed, and a set of standard er-
ror messages is provided, which the UCB can use as well; see the list below. The
numbers provided are message numbers for error reporting by UserCode Blocks.
The status word IINFO(1) is provided to let a UCB return error information to the
simulator program. If the UCB returns the value -2 in this location, a generic error
message is generated. But a UCB can also use the following formula to have the
simulator program post a specified message:

Error Indication = -(10*M# + 2)

where M# is the message number. These error indications are useful to SystemBuild
and its UCB technology; they are not compatible with AutoCode. For example, to
post the message “Square Root of negative number,” the UCB simply returns -62 in
the IINFO(1) status word.

Simulation Errors

1. SIM_ERROR: Division by 0.0 produces infinity

If the second input vector to a divide block, u(NO + 1: 2: NO), contains a zero
value, then this simulation error occurs.

2. SIM_ERROR: Raise 0.0 to a non-positive power .

A simulation error occurs when the input to an exponential block and the con-
stant power is less than or equal to zero.

3. SIM_ERROR: Both arguments to ATAN2 are zero.

The output of the arctangent2 function is undefined when both inputs are zero.
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4. SIM_ERROR: ASIN or ACOS argument out of range.

The input to the arcsine or arccosine function block must be in the range from
-1 to 1. The output of this function is in the range 0 to π.

5. SIM_ERROR: Natural log of zero or negative number.

A simulation error occurs if any input to the log block is less than or equal to
zero.

6. SIM_ERROR; Square root of negative number.

A simulation error occurs if any input to the square root block is negative.

7. SIM_ERROR: Incoming data not in range of table.

For the two-input system, no extrapolation is performed on evaluation to extend
the ranges of the inputs to the LinearInterp block. If either input range is ex-
ceeded in the analysis of this block, an error occurs.

8. SIM_ERROR: raise negative number to non-integer.

A simulation error occurs when the input to an exponential block represents a
floating point power and the constant is less than zero.

9. SIM_ERROR: Overflow in y= EXP(u) function

Quantity out of range of hardware.
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15 Fixed-point Arithmetic

This chapter describes SystemBuild Fixed-point arithmetic. This feature emulates
two’s complement binary arithmetic, allowing systems running AutoCode generated
code (for example, in embedded processors) or RealSim to interface directly with in-
expensive processors that do not support floating-point math.

The following SystemBuild blocks support fixed-point arithmetic.

Fixed-point blocks are compatible with other SystemBuild blocks, the simulator,
and other features of SystemBuild. Thus, models may contain floating-point, inte-
ger, logical, and fixed-point components in any mixture.

Fixed-point arithmetic only operates in discrete SystemBuild models; that is, the
SuperBlocks in the part of the model using fixed-point must be discrete free-run-
ning, enabled, triggered, or procedure — never continuous.

AbsoluteValue BilinearInterp Constant ConstantInterp

Gain CrossProduct DataStore DataPathSwitch

DeadBand DotProduct ElementDivide ElementProduct

Limiter LinearInterp LogicalOperator MatrixTranspose

Preload ReadVariable RelationalOperator Saturation

ScalarGain ShiftRegister Summer TimeDelay

TypeConversion WriteVariable
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Fixed-point arithmetic differs from floating-point arithmetic in several ways:

■ Addition and multiplication are not associative.

■ Overflow can occur if the output number is too big for the datatype.

■ Questions of precision and significance arise because of the fixed wordsizes and
ranges of the datatypes.

The SystemBuild user interface provides several access points to fixed-point infor-
mation:

■ The SystemBuild connection editor reports on the datatypes of fixed-point sig-
nals.

■ The Inputs tab allows you to specify fixed-point input datatypes.

■ The Outputs tab allows you to specify fixed-point output datatypes.

■ The Gain and ScalarGain block dialogs allow you to specify a radix position for
the gain parameter.

■ User-defined datatypes (also called usertypes) provide an aliasing capability for
SystemBuild datatypes. It is possible to assign to a name that is relevant to your
problem to a datatype. Although usertype support is a general SystemBuild fea-
ture, it is particularly convenient for fixed-point arithmetic, where you may need
to switch datatypes after each simulation. For more information on usertypes,
see Section 15.5 on page 15-40, and for a full treatment of datatypes, see
Section 4.5 on page 4-19.

■ For simulation or code generation, the SystemBuild Analyzer performs all nec-
essary datatype checking, based on datatype checking rules tabularized in
Section 15.3 on page 15-23. For operation of the Analyzer, see Section 7.5 on
page 7-10.

■ The block set for use with fixed-point numbers includes arithmetic, logical, and
piecewise linear blocks. For the complete list see Table 15-1 on page 15-23.

AutoCode provides full support for fixed-point arithmetic in generated code. See
“Fixed-point Arithmetic” in the AutoCode User’s Guide.
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15.1 Introduction to Fixed-point Arithmetic

For computation with real numbers, floating-point representation and arithmetic is
the usual approach; however, floating-point calculation is slow compared to integer
calculations. Coprocessors can speed up floating-point calculations, but integer
arithmetic is still faster in most cases. Libraries that emulate coprocessors are also
notoriously slow. Fixed-point representation and arithmetic is an alternative ap-
proach that takes advantage of processor instructions. This computational method
(and corresponding notation) uses scaled integers to represent floating-point num-
bers, thereby avoiding the overhead of floating-point calculations.

The rest of this chapter discusses the issues involved in simulating models and gen-
erating fixed-point C code from a SystemBuild model, with integer datatypes and
scaling, and the options available to produce fixed-point code.

15.1.1 Fixed-point Number Representation

Fixed-point arithmetic uses integer datatypes, in which a fixed number of the bits
(fractional part) are used to represent the fractional component of a number and the
rest (integer part) are used to hold the integer component. This allows real numbers
(or an approximation of them) to be stored in integers. Fixed-point numbers are re-
stricted to 8-bit, 16-bit and 32-bit representations. This limitation is referred to as
wordsize; thus the possible wordsizes for fixed-point numbers are 8, 16, and 32
bits.

Throughout this chapter, m refers to the number of bits in the fractional part (also
referred to as the radix position), and n denotes the number of bits in the integer
part. Thus, a fixed-point number’s wordsize is n + m + 1 if it is signed or n + m if un-
signed. The precision of a fixed-point number is 2-m, its maximum significance is 2n-
1, and the range of the fractional part is [0, 1-2-m]. The range of an unsigned fixed-
point number is [0,2n-2-m]. The range of a signed fixed-point number is [-2n, 2n-2-m].

Figure 15-1 shows an eight-bit unsigned fixed-point number with radix position 4,
meaning that four bits are for the fractional part and leaving four bits for the integer
part. The precision is 1/16, the range of the fractional part is [0, 15/16]. The maxi-
mum significance of the number is 15, and the range of the number is [0, 15 ].

Figure 15-2 on page 15-4 shows an eight bit signed fixed-point number with radix
position 6. The precision is 1/64, the range of the fractional part is [0,63/64], the
maximum significance is 1, and the range of the number is [-2,1 ].

Note that when the radix position is zero, the Figure 15-1 example is an unsigned
integer with range [0,255], and the Figure 15-2 example is a signed integer with
range [-128, 127].

15
16
------

63
64
------
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The scaling referred to in fixed-point arithmetic is directly related to the radix posi-
tion, m, of the fixed-point datatypes. The scale factor is 2m. As an example, the
number 1.25 is stored as 00000101 in an unsigned 8-bit fixed-point datatype with
(n=6, m=2). In regular two’s complement integer format this binary number is equiv-
alent to the decimal number 5, which is 1.25 times the scale factor 4. Since the scal-
ing is implicit in the radix position, we will henceforth refer only to the latter.

Obviously, two different fixed-point numbers cannot be operated on without know-
ing their radix positions. Were the wordsize limitations not a constraint, the follow-
ing rules would provide the result radix position, wordlength, sign (that is, the

FIGURE 15-1 An Unsigned Fixed-point Number with 8 Bits and Radix Position 4

1 11 1 1 1 1 1

Fractional Part = mSize of Integer Part = n

Radix Position (= 4)

Precision = 2-m = 1/16
Range = [0, 15/16]

Maximum significance

of Integer Part = 2n - 1= 15
Range of an 8-bit number
with radix position of
4=[0, 15 15/16]

FIGURE 15-2 A Signed Fixed-point Number with 8 Bits and Radix Position 6

1 11 1 1 1 1 1

Radix

± Sign Bit

Most Significant
bit (Integer Part)

Size of Fractional Part = m

Precision= 2-m = 1/64
Range of fractional part = [0, 63/64]
Range of signed 8-bit number with
radix position of 6 = [-2, 1 63/64]Position (= 6)
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result datatype), and required operand alignment strategy for maximum precision in
the basic algebraic operations, when only two operands are involved.

Note that these rules are the equivalent of decimal point alignment in decimal arith-
metic.

In practice, the wordsize is constrained to values such as 8, 16, or 32, which may
cause serious problems for the rules above. For example, the potential left shift in-
volved in addition and subtraction may result in an overflow† if it causes a signifi-
cant bit to “fall off” the left (most significant) side of the word boundary. A similar
difficulty may arise in multiplication if the sum of operand radix positions plus the
number of bits necessary for the integer part of the result is greater than the allow-
able product wordsize.

Moreover, the user has frequently determined a desired datatype for the result of the
basic fixed-point operations. Such a determination might be a result of test data,
experience, or previous simulations (fixed or float). Almost always they would im-
pact the radix position and alignment rules discussed above.

For maximum flexibility, every block that supports fixed-point arithmetic allows the
user to specify an output datatype. In most cases, such output datatype stipulation
resolves operation datatype issues appropriately. Nevertheless, there are cases
where more datatype information is required before the fixed-point operation is fully
defined. These cases are explained in the following section.

We now turn our attention to basic fixed-point operations. In the examples below an
unsigned fixed-point number will be represented as an ordered pair (i, rn), where i is
the integer and n is the radix position. Example: (37, r4) is a fixed-point number
with integer 37 and radix position 4 (=2.3125). For characterizing signed numbers
we employ the triplet (i, rn, sign).

Addition and
Subtraction

The operand with the smaller radix position must be aligned with the
larger radix position (this involves a left shift of the bit pattern), and
the result radix position is the larger of the operand radix positions.

Multiplication The result radix position is the sum of the radix positions of the oper-
ands. No alignment is required for the operands.

Division The result radix position is the radix position of the numerator minus
the radix position of the denominator. No alignment is required for the
operands.

† Overflow is defined as loss of significance; i.e., losing bits in the integer part
of the number. The term underflow is used to mean overflow on a negative
number.
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15.1.2 Conversion Between Fixed-point Numbers

Users can convert one fixed-point datatype to another using a Signal Type Conver-
sion Block. Algorithmically, if the wordsize is not changed, this operation amounts
to a change in the radix position.

In AutoCode generated software, to change the radix position of a number, we use
multiplication or division by bitwise shifting as explained below.

To increase the radix position of a fixed-point value by one, the integer is multiplied
by two, by shifting the integer one position to the left. Note that this operation will
overflow if the result cannot fit in the number of bits available. When this happens a
significant bit “falls off” the left-hand side of the number. (A significant bit is 1 for
unsigned or signed positive; 0 for a signed negative number.)

Similarly, to reduce the radix position of a fixed-point value by one the integer is di-
vided by two, using a bitwise right shift. In this instance, loss of precision will occur
if the least significant bit of the stored integer is a significant bit before the shift. On
many computers right shifting a negative integer n positions will yield a different re-
sult from dividing it by 2n. In SystemBuild and AutoCode the division standard is
implemented, although AutoCode can be configured to use the shifting standard in-
stead. The bit shifted into the most significant bit location of the integer is zero for
unsigned numbers and equal to the sign bit for signed numbers.

Example 15-1 shows conversion between fixed point numbers of different radix po-
sition.

EXAMPLE 15-1: Conversion of fixed-point numbers

0010 ^0101 (n1 = (37, r4), decimal value: 2.3125)

(^ indicates the imaginary position of the radix position within the binary data)

Align to radix position of 6 (i.e. shift left n1 by 2):

10^010100 (n2 =(148,r6), decimal value: 2.3125)

15.1.3 Addition and Subtraction

For fixed-point addition and subtraction, the radix positions of the two operands are
aligned and then the numbers are added or subtracted, respectively. The result’s ra-
dix position stays in the same position. Example 15-2 on page 15-7 adds fixed-point
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number n1 = (37, r4) and fixed-point number n2 = (65, r1), to produce fixed-point
result number n3 with radix position 2, using 8-bit unsigned variables.

EXAMPLE 15-2: Addition of Fixed Point Numbers

In binary representation:

0010 ^0101 (n1 = (37, r4), decimal value: 2.3125)

+

0100000 ^1 (n2 = (65, r1), decimal value: 32.5)

Align the radix positions of n1 and n2 to the radix position of the result before add-
ing (i.e. shift n1 right by 2 bits, shift n2 left by 1 bit). Place the aligned results in n1'
and n2' and perform the addition:

000010 ^01 (n1' = (9, r2), decimal value: 2.25) *

+

100000 ^10 (n2' = (130, r2), decimal value: 32.50)

100010 ^11 (n3 = (139, r2), decimal value: 34.75)

* Loss of precision incurred while shifting n1 to n1'.

15.1.4 Multiplication

Multiplication of fixed-point numbers does not require pre-alignment of radix posi-
tions. The radix position of the product is the sum of the radix positions of the oper-
ands, and the stored value of the result is the product of the stored values of the
operands. The length of the result of a multiplication can be as great as the sum of
the lengths of the operands. Because the result of a multiplication may not fit into a
variable of the same length as the operands, widening multiplication is performed in
SystemBuild and AutoCode for the multiplication operation to produce an internal
result that holds the full product. For example, if two 8-bit variables are multiplied
the internal result is a 16-bit variable and if two 16-bit variables are multiplied the
internal result is a 32-bit variable. This internal result is then converted to the de-
sired fixed-point datatype, with possible loss of precision (clipping of the least signif-
icant bits), and/or loss of significance (clipping of the most significant bits). Use of
an extended internal datatype avoids overflow of the multiplication, and allows over-
flows to be corrected before the output datatype is applied. Because 64-bit
datatypes are not supported in C or Ada, extended internal results are stored using
two 32-bit datatypes.
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Example 15-3 illustrates multiplication of fixed-point number n1 = (37, r4) and
fixed-point number n2 = (65, r1) to produce fixed-point result number n3 with radix
position 2, using 8-bit unsigned variables and 16-bit intermediate result.

EXAMPLE 15-3: Multiplication of Fixed Point Numbers of Different Radix Positions:

0010 ^0101 (n1 = (37, r4), decimal value: 2.3125)

*

0100000 ^1 (n2 = (65, r1), decimal value: 32.5)

00001001011 ^00101 (n3' = (2405, r5), decimal value: 75.15625)

Align the radix position of n3' to the radix position of the result (i.e. shift n3' right by
3 bits). Place aligned results in n3:

1001011 ^00 (n3 = (300, r2), decimal value: 75.0)

15.1.5 Division

Division of fixed-point numbers does not require pre-alignment of radix positions.
The radix position of the quotient is the radix position of the dividend minus the ra-
dix position of the divisor. The stored value of the result is the integer division of the
stored values of the operands. Depending on the processor, narrowing division may
be performed internally in the division operation, meaning that a dividend is twice
the length of the divisor, and the result has the same wordlength as the divisor. The
benefit of narrowing division is that the dividend can be left-shifted to increase its
radix position before the division to give a result with the maximum possible preci-
sion. Example 15-4 illustrates division of fixed-point number n1=(128, r4) by fixed-
point number n2=(224, r5) to produce fixed-point result number with radix position
7, using 8-bit unsigned variables and a 16-bit internal variable.
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EXAMPLE 15-4: Division of Fixed Point Numbers of Different Radix Positions:

1000 ^0000 (n1 = (128, r4), decimal value: 8.0)

Left Shift dividend to increase its radix position to:

1000 ^000000000000 (n1' = (32768, r12), decimal value: 8.0)

÷

111 ^00000 (n2 = (224, r5), decimal value: 7.0)

000000001 ^0010010 (n3'=(146, r7), decimal value: 1.140625)

Store result in 8-bit unsigned variable n3:

1^0010010 (n3 = (146, r7), decimal value: 1.140625)

15.1.6 Relational Operations

For comparing two fixed-point numbers of the same wordsize the number with the
smaller radix position (i.e., the number with the lower precision) is aligned with the
number with the larger radix position, then the numbers are subtracted. The result
is a logical value, with one indicating the comparison is true, and zero indicating
false. Example 15-5 shows greater-than comparison of fixed-point number n1 = (25,
r3) and fixed-point number n2 = (17, r1), using 8-bit unsigned variables.

EXAMPLE 15-5: Relational Comparisons

In binary representation:

00011 ^001 (n1 =(25, r3), decimal value: 3.125)

>

0001000 ^1 (n2 = (17, r1), decimal value: 8.5)

Align the radix position of n2 to the radix position of n1 before comparing (i.e. shift
n2 left by 2 bits). Place aligned results in n2':

00011 ^001 (n1 =(25, r3), decimal value: 3.125)

>

10000 ^100 (n2' = (136, r3), decimal value: 8.5)

FALSE
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15.1.7 Overflow

An overflow occurs when the result of the operation is too large to fit in the number
of bits available. Overflow protection is the ability to detect and correct overflows
and underflows within fixed-point calculations. If overflow protection is enabled, the
numeric results will exhibit saturation. If overflow protection is disabled, the nu-
meric results show that a wrap occurs.

If a fixed-point compatible block performs numeric computations, you have the op-
tion of enabling fixed-point protection for that block alone. Go to the Output tab and
enable the Overflow Protection  checkbox. The following blocks have this option:
BilinearInterp, ConstantInterp, Gain, CrossProduct, DotProduct, ElementDivide,
ElementProduct, LinearInterp, LogicalOperator, MatrixTranspose,
Preload, ScalarGain, Summer, and TypeConversion.

Overflow can be detected efficiently in assembly code by examining the processor
status flags, but in C these flags are not available, and we must test results for con-
sistency. Example 15-6 shows overflow in the context of conversion of fixed-point
number (32, r4) to a fixed-point number with radix position 7.

EXAMPLE 15-6: Conversion of Fixed-point Number with Overflow Protection.

0010 ^0000 (n1 = (32, r4), decimal value: 2.0)
Align to a radix position of 7 (i.e. shift left n1 by 3):

0^0000000 (n2 = [0, r7], decimal value: 0.0)*
Correct Overflow (i.e. use maximum number possible):

1^1111111 (n2 = (255, r7), decimal value: 1.9921875)

* Overflow has occurred while left-shifting n1.

Example 15-7 on page 15-11 shows addition of fixed-point number n1=(249, r4) and
fixed-point number n2=(7, r3) to produce a fixed-point result number with radix po-
sition 4, using 8-bit unsigned variables. Overflow protection is provided.
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EXAMPLE 15-7: Addition with Overflow Protection

1111 ^1001 (n1 =(249, r4), decimal value: 15.5625)

+

00000 ^111 (n2 = (7, r3), decimal value: 0.875)
Align the radix position of n2 to the radix position of the result before adding (i.e.
shift n2 left by 1 bit). Place aligned results in n2':

1111 ^1001 (n1' =n1= (249, r4), decimal value: 15.5625)

+

0000 ^1110 (n2' = (12, r4), decimal value: 0.875)

10000 ^0111 (n3' = (7, r4), decimal value: 0.4375)*

Correct Overflow (i.e. use maximum number possible):

1111 ^1111 (n3 = (255, r4), decimal value: 15.9375)

* Overflow has occurred while adding n1' and n2'.

15.2 SystemBuild Fixed-point

15.2.1 User Interface

The user of fixed-point math proceeds much as one does in the traditional System-
Build paradigm, selecting, placing, parameterizing, and connecting blocks. Particu-
lar differences are the emphasis placed on assigning datatypes, and its influence on
the ranges and precisions of data values. Two places are provided for specifying
fixed-point data:

SuperBlock Input dialog box  — The input tab view is accessed from the SuperBlock At-
tributes dialog. The Attributes dialog is accessed through the SuperBlock menu
in the SuperBlock ID bar at the top of the SystemBuild display. Click on the In-
puts Tab, then on the Input Data Type , and some of the datatype selections are of-
fered. To obtain the complete list of choices, press the left mouse button or the
Input Data Type field label until a vertical list appears, then move the mouse down
to select the appropriate datatype, then release the mouse button. You can add
the Input Radix  as required.
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Block Output dialog box  — The Block Output tab view is accessed as one of the tabs in
the block parameters dialog. Click on the Outputs Tab, then on the Output Data
Type, and some of the datatype selections are offered. To obtain the complete list
of choices, press the left mouse button or the Output Data Type field label until a
vertical list appears, then move the mouse down to select the appropriate
datatype, then release the mouse button. Then you can add the Output Radix as
required.

In both these dialog boxes, you can also type a user defined datatype or usertype.
This method is described in Section 15.5 on page 15-40.

Note that Float (real floating-point numbers) is the default setting for inputs and
outputs of the blocks discussed in this chapter.

15.2.2 Simulator

For simulating from the Xmath Command area, use the fixpt keyword to invoke
fixed-point arithmetic. For simulating from the Simulation Parameters dialog, click
on the FixedPointSim field to change it from no to yes. The fixpt keyword or
FixedPointSim field are useful for comparisons and for studying the effect of quantiza-
tion. Simply run a simulation with fixpt off, then with it on, and compare the re-
sults.

If fixpt is set, you can also use the fixpt_round keyword. If true, results of fixed
point calculations are quantized by rounding to the nearest fixed point number and
rounding away from zero if at a mid-point. If fixpt_round = 0, results of fixed
point calculations are quantized by truncation. Default = 0. If fixpt is not set,
fixpt_round  has no effect.

Note that whenever fixpt  is set:

■ Datatype checking is always on.

■ External inputs are always rounded

■ Parameters are rounded, and their datatypes are not directly specified, but are
derived from the block type.

■ Saturation arithmetic is used: values are clipped with no wrapping.

■ Calculation quantization is controlled by the fixpt_round  keyword.
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15.2.3 Building a Model and Demonstrating Overflow

When the size of a value becomes too large to fit in the datatype, overflow has oc-
curred (thus, in the example in Figure 15-1 on page 15-4, trying to place a value
≥ 16 in the register that holds the number causes overflow; in Figure 15-2 on
page 15-4, attempting to place a number ≥ +2 or < -2 in the register similarly over-
flows).

Rather than showing garbage when a value has overflowed, the simulator returns
the extremal number for the given output datatype (positive or negative depending
on whether the number that overflowed was positive or negative). This is known as
Saturation Arithmetic. In SystemBuild simulation, you can clearly see the effects of
overflow by building a simple one-block model. Example 15-8 shows this.

EXAMPLE 15-8: Demonstrating Fixed-point Arithmetic and Overflow

1. First create a discrete free-running SuperBlock; name it Test . The exact Sam-
pling Period  does not matter; accept the default value of 0.1.

2. Inside the SuperBlock place an ElementProduct block. Connect two external in-
puts to the inputs of the block, and connect the output to an external output.
See Figure 15-3 on page 15-13 for this model.

3. Click the left mouse button in the SuperBlock ID area to invoke the SuperBlock
Properties dialog. On the Inputs tab, change the datatype of both inputs to
Signed Byte .

See Figure 15-4. This step is required to change the default input datatype
(float) to the needed fixed datatype. Observe the bottom line of the dialog, where
a Mnemonic (SB0 for Signed Byte, 0 radix) is shown, followed by Minimum,

FIGURE 15-3 Model to Demonstrate Overflow
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Maximum, Resolution, and Scale Factor. Note that the range [minimum, maxi-
mum] is [-128, 127].

4. Select the block and press return to raise its block dialog. On the Outputs tab,
select Signed Byte from the Output Data Type  combo box on the right. See 15-5.

5. Try a simulation without fixpt asserted. From the Xmath command area,
type:

t = [0:.1:10]';
u = [2*t,t];
y = sim("test",t,u,{graph});

See Figure 15-6 on page 15-15 for the way the plot should look. The range of the
y output is [0, 200], and, as we saw in the Output block dialog (Figure 15-5),
that is outside the range of the output datatype, SB0. However, the fixpt key-
word is not activated, and therefore floating-point arithmetic is performed, with-
out the absolute fixed-point limitations on the output.

6. Try another simulation, this time with fixpt  asserted:

y = sim("test",t,u,{graph,fixpt});

FIGURE 15-4  SuperBlock Dialog with Input Types Shown
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FIGURE 15-5 Outputs tab with Signed Byte Chosen

FIGURE 15-6 Fixed-point Plot without Overflow
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The plot should look like Figure 15-7.

Observe what is happening here; the value increases until 127, the maximum num-
ber for the SB0 datatype, is reached, then it flattens out. The range of output values
for the simulation run would be [0, 200], which is outside the range of the SB0 out-
put datatype as seen in Figure 15-5 on page 15-15. SystemBuild responds to a data
out-of-range (overflow), by truncating the output value at the extremal range point.
If the output value stops overflowing the output datatype, the simulation stops re-
turning maximal values.

15.2.4 Comparing Fixed- and Floating-Point Numbers

Example 15-9 on page 15-17 shows a way to compare fixed- and floating-point
numbers. One way to perform a quantitative comparison is to convert the fixed-
point number to floating-point, then subtract it from a floating point input of the
same value.

FIGURE 15-7 Fixed-point Plot with Overflow
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EXAMPLE 15-9: Comparing Fixed- and Floating-Point Numbers

Proceed as follows:

1. Start a new SuperBlock . Name it test1 . Make it discrete and specify two inputs
and one output.

Create the model shown in Figure 15-8.

2. The parameterization of the TypeConversion block is as follows: block 1 accepts
a floating-point signal and produces a fixed-point output. Change the Output Type
from Integer to Signed Byte, and give it a Radix Position of 6; this is critical to the
precision of the output. See Figure 15-9 on page 15-18 for the parameters tab
with these changes made.

3. Modify block 2 so that the Input Type is Signed Byte, the Input Radix is 6, and the
Output Type  is Float.

4. The way this model works is to accept the same sine-wave input on two different
pins. One of the inputs (topmost) is kept in floating point format and run to the
positive side of a summing junction. The other input is changed to SB6 (signed
byte, Radix Position 6) and then changed directly back to floating point. The
second input is then fed to the minus side of the summer. Thus, when the out-

FIGURE 15-8 Example Showing how to Compare Fixed and Floating Types;
SB0 Case Shown
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put is plotted, it shows the difference between the floating-point input and its
fixed-point form. In the Xmath command area, type:

t = [0:.1:10]';
u = [sin(t),sin(t)];

5. Select Tools→Simulate. In the dialog, specify t and u for the time vector and the
input data variable, respectively. Make the Sim Type Fixed (Round) and enable
Plot Outputs (i.e., plot). The Simulation Parameters dialog should look like Figure
15-10 on page 15-19. Click OK.

6. See Figure 15-11 on page 15-19 for the way the plot should look. From the plot,
it appears that, at this Radix Position, the fixed and floating values of the input
sine wave will never vary by more than about ± 0.008. This agrees with the pre-
dicted range of differences, ±1/2 the resolution, which is equal to 2-6 =
0.015625.

7. To observe the impact of the Radix Position on the precision of a vector of val-
ues, change the output radix position of block 1 to 0, and change the input ra-
dix position of block 2 to 0. Select Tools→Simulate and click OK to rerun the
simulation (the dialog remembers your last settings). The output plot should
look like Figure 15-12 on page 15-20.

FIGURE 15-9 Block 1 Parameters Tab
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FIGURE 15-10 Sim Dialog, Ready for Simulating Comparison

FIGURE 15-11 Plot of Comparison with Radix Position 6
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Examination of this plot shows that with a radix position of 0, the fixed-point
and floating-point representations can differ by as much as ±0.5; again this
agrees with the predicted range of differences, which would be [-1/2, + 1/2].

15.2.5 Comparing the Effects of Different Conversion Sequences

The effect of converting between floating and fixed datatypes for different arithmetic
operations varies according to the sequence of operations. This is illustrated in
Example 15-10, where fixed- and floating-point inputs are brought into a network of
TypeConversion blocks and Gain blocks. Each input is changed to the other
datatype and multiplied by a constant; it is the sequencing of these operations that
is significant.

FIGURE 15-12 Plot of Comparison with Radix Position 0
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EXAMPLE 15-10: Effect of Datatype Conversion before and after Multiplication

1. Build up the model shown in Figure 15-13. Give the model a name, test2 , and
make the SuperBlock discrete. Observe common points of the blocks:

2. All the Gain blocks share the same Gain value, 1.3. The output datatype for the
Gain blocks named float is float; the output datatype for those named SB6 is
SB6.

3. The two Conversion blocks named SB6in_float_out have input datatypes of
SB6 and output datatypes of float; the other two TypeConversion blocks have
input datatypes of float and output datatypes of SB6.

● The upper summing junction, Float_sub , has an output datatype of float;
the other summing junction, Fixed_sub , has an output datatype of SB6.

● The datatype of Input 1 is SB6; for Input 2 it is float.

FIGURE 15-13 Model for Datatype Conversion before and after Multiplication
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4. When the blocks are connected correctly, create a t-vector and u-matrix, then
proceed to simulate the model:

t = [0:.1:10]';
u = [sin(t), sin(t)];
y = sim("test2",t,u,{fixpt, graph})

The plot should look like Figure 15-14. Observe the many differences between the
sequences of operation.You can design many other modes of operation to compare.

FIGURE 15-14 Plot of the Datatype Conversion before and after Multiplication Example
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15.3 Fixed-point Blocks and I/O Datatype Rules

A selected group of SystemBuild blocks have been adapted for use with fixed-point
arithmetic. Table 15-1 lists the changed blocks, plus data typing I/O and block pa-
rameter rules for using the blocks with fixed-point arithmetic. Integrated Systems
software supports four datatypes: floating-point, integer, logical, and fixed. Under
fixed, we support 390 “sub-types”, referred to as fixed-point datatypes, which con-
stitute the subject matter of this chapter.

Unless otherwise noted, in Table 15-1 the terms “type” or “fixed type” refer to fixed-
point datatypes. Fixed-point types are said to be the same only if the length, sign
status (signed or unsigned), and radix position are identical.

TABLE 15-1  Blocks Compatible with Fixed Point, with Datatype Rules

Block Names Input/Output Datatype Rules

SuperBlocks

Datastore ■ Fixed type of input to block must be the same as the reg-
ister type.

ReadVariable
WriteVariable

■ Type of input to block must be the same as input pa-
rameter type.

■ All inputs must be the same type.

■ All outputs must be the same type.

Algebraic Blocks

Gain ■ All inputs must be the same fixed datatype.

■ All outputs must be the same fixed datatype.

■ Output wordsize must be ≥ input wordsize.

■ See Section  on page 15-32.

Summer
ElementProduct
DotProduct
CrossProduct

■ Each element in an input vector must be the same fixed
type.

■ All outputs must be the same fixed type.

■ Output wordsize must be ≥ input wordsize.

ElementDivide ■ Each element in an input vector must be the same fixed
type.

■ All outputs must be the same fixed type.

■ Numerator wordsize may exceed denominator wordsize
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TypeConversion ■ Fixed type of input to block must be the same as input
parameter fixed type.

■ All inputs must be the same fixed type.

■ All outputs must be the same fixed type.

Piece-wise Linear

DeadBand ■ All inputs must be the same fixed type.

■ All outputs must be the same fixed type.

■ Parameter type is the same as the fixed input type

Saturation
Limiter

■ All inputs must be the same fixed type.

■ All outputs must be the same fixed type.

■ Parameter fixed type must be the same as the output
fixed type.

AbsoluteValue ■ All inputs must be the same fixed type.

■ All outputs must be the same fixed type.

Preload ■ All inputs must be the same fixed type.

■ All outputs must be the same fixed type.

■ Mag: Exact same as output type.
Slope: shrinkwrapped output wordlength.

Dynamic Blocks

TimeDelay ■ All fixed datatypes must be the same.

■ Initial output must be the same fixed datatype as the
output.

Logical Blocks

LogicalOperator
RelationalOperator

■ All datatypes are accepted, in any combination.

ShiftRegister ■ All datatypes must be the same.

DataPathSwitch ■ The first input can be any type.

■ All other input fixed types and the output fixed type
must be the same; can be different from the first.

TABLE 15-1  Blocks Compatible with Fixed Point, with Datatype Rules  (Continued)
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15.3.1 Advanced Simulation Topics

This section provides information for advanced users on topics of Intermediate
Datatypes, various simulation topics, 32-bit operations, and the Gain block.

Intermediate Types

The basic fixed-point algebraic operations are uniquely defined when all three of the
following conditions are met:

1. The operation is binary (requires two operands) or unary (requires only one op-
erand).

2. The operand types are defined.

3. The result datatype is defined.

Interpolation Blocks

ConstantInterp
LinearInterp

■ All inputs must be the same fixed type.

■ Invals: same fixed type as inputs;

■ Outvals: same fixed type as outputs.

BilinearInterp ■ Input 1 and Input 2 can be different fixed types.

■ Inval 1 must be the same fixed type as Input 1; Inval 2
must be same fixed type as Input 2; Outvals must be the
same fixed type as outputs.

Matrix Equations

ScalarGain ■ All inputs must be the same fixed datatype.

■ All outputs must be the same fixed datatype.

■ Output wordsize must be ≥ input wordsize.

■ See Section  on page 15-32.

MatrixTranpose ■ All inputs must be the same fixed datatype.

■ All outputs must be the same fixed datatype.

■ Output wordsize must be >= input wordsize.

Constant ■ All inputs must be the same fixed datatype.

■ All outputs must be the same fixed datatype.

■ Output wordsize must be >= input wordsize.

TABLE 15-1  Blocks Compatible with Fixed Point, with Datatype Rules  (Continued)
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Since the datatypes of all inputs and outputs are required for any block in a Super-
Block, it follows that all fixed-point binary operations are well-defined in System-
Build. Complications arise, however, when models are created that involve basic
operations with more than two operands. An example of such a situation would be a
summation block with four inputs, formally described by:

y = a + b + c + d EQ. 15-1

For this discussion assume that the computation order in the above expression is
equivalent to:

y = (((a + b) + c) + d) EQ. 15-2

This ordering indicates that the computation would proceed by calculating the sum
of a and b, which in turn will be added to c, etc. In other words, the following inter-
mediate steps are involved in the calculation of y:

s1 = a + b EQ. 15-3

s2 = s1 + c EQ. 15-4

y = s2 + d EQ. 15-5

The question arises as to what the datatype of s1 and s2 should be as the user has
not specified them in SystemBuild. Variables s1 and s2 are intermediate variables
and the types associated with them are called Intermediate Types or ITypes. Al-
though these variables are transparent to the user, a consistent and predictable de-
termination of their types is crucial to the final result. Generally speaking, for any
block that combines n operators, n-1 intermediate types can be defined.

As another example consider the following case, which raises a subtle issue:

y = - a + b EQ. 15-6

At first sight, it appears that Equation 15-6 is the same as Equation 15-7:

y = b - a EQ. 15-7

and therefore requires no intermediate variables and hence no ITypes. But closer in-
spection reveals that Equation 15-6 may be written as:

s1 = -a; EQ. 15-8

y = s1 + b; EQ. 15-9

Thus, Equation 15-6 is not a simple subtraction but represents a negation opera-
tion followed by an addition. With two operands, negation and addition, it is not
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surprising that Equation 15-6 involves an intermediate datatype. This implies that
Equation 15-6 and Equation 15-7, depicted in Figure 15-15, may lead to results
that are different (although numerically close). Using Equation 15-7 is more effi-
cient because it contains no ITypes and also it maps directly to one operation in
both the simulation engine and the generated code. It is therefore the recommended
usage.

Integrated Systems’ built-in IType rules are based on two goals. Given the operand
types and the nature of operation, the ITypes are derived such that:

1. The likelihood of overflow is minimized.

This makes sure that, possibly at the expense of precision in the least signifi-
cant bits, the most significant bits in the operation are protected. (There is one
minor exception to this rule; see Item (4) part (b) below.)

2. Wordlength promotions are minimized at the expense of precision in the digits
to the right of the radix point.

The idea behind this goal is to strike a balance between precision and computa-
tional expense in the eventual code that is generated from the SystemBuild
model. (Word promotions refer to increase in the size of the datatype
wordlength; e.g., from 8 bits to 16 bits.) Example 15-11 on page 15-28 illus-
trates this phenomenon.

FIGURE 15-15 Add and Subtract Sequencing
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EXAMPLE 15-11: Need for Intermediate Types

1. Suppose that z = ((x1 + x2) + x3) with:

Type(x1):= Signed Byte (8 bits) with Radix 3 (SB3)

Type(x2):= Signed Byte with Radix 4 (SB4)

Then we can use rules 1 and 2 to determine an IType for the sum of x1 and x2.
To apply rule 1 we evaluate the extremal number that can possibly be produced
by the addition. In the worst case, the largest possible sum (in an absolute value
sense) occurs when x1 = -16 and x2 = -8, in which case x1 + x2 = -24. Thus the
IType that would guard against overflow would be SB2 (signed byte radix 2).

2. In 1, if the datatype of x2 were changed to:

Type(x2):= Signed Byte with Radix 1 (SB1)

Then the IType based on rules 1 and 2 would be SB0.

3. In 1, if the datatype of x2 were changed to:

Type(x2):= Signed Byte with Radix 0 (SB0)

Then in the worst case, no 8 bit signed datatype could guard against overflow.
In this situation, the IType would be a 16 bit signed number with radix 7 (de-
noted as SS7).

4. Now let us consider the earlier expression y = -a + b.

We need to determine an IType for the negation operation.

a. First assume that:

Type(a):= Unsigned Byte with Radix 4 (UB4).

Then, since the negated value will be negative, the IType must be signed.
Since, in the worst case, datatype UB4 may be as large as 15.9375 the ap-
propriate IType is SB3.

b. Now consider the case where:

Type(a):= Signed Byte with Radix 4 (SB4)

The only difference here is that a is now a signed quantity. Ignoring the pos-
sibility of a being equal to the extremal negative number accommodated by
this datatype (-16), SB4 would accommodate all the other values that fit in
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Type(a). Since the price of accommodating this last value is too much (losing
one complete bit of information), an exception is made to IType selection
rules above to keep SB4 as the IType here. Thus the negation of signed
types, in general, is a minor exception to the first rule of ITypes.

The fixed-point enhancements to SystemBuild include a generalized version of the
IType presented above. This generalization is implemented for all the datatypes and
basic algebraic operations (negation, addition, subtraction, multiplication, and divi-
sion, as well as all the supported blocks that require them). Note that, for 8 and 16
bit datatypes the IType rules guarantee that overflow would not take place (case 4b
above is the only exception). For 32 bit types, this guarantee is not possible because
no word promotion beyond 32 bits is provided.

NOTE: Consider a computation with a large number of additions, such as:

y = a1 + a2 + a3 + a4 + a5 + a6 + a7 + ... EQ. 15-10

To keep the nesting of intermediate datatypes from becoming excessive, we have
placed a limit on the number of intermediate datatype computations that will be
performed for any summation or multiplication block. The limit is placed at six;
the seventh intermediate datatype is set to the result datatype and the cycle
continues.

It should be noted that the user can avoid the use of intermediate type rules by
restricting block diagrams to contain only well-defined binary or unary opera-
tions.

Simulation Issues

As you construct SystemBuild diagrams that perform fixed-point operations, keep
certain issues in mind.

Fixed-point addition and multiplication (with or without intermediate types) forms
an algebraic system that, although commutative, is not associative. for example, as
illustrated in Figures 15-15 and 15-16 this means that:

 (a + b) + c = c + (a + b), (commutative) EQ. 15-11

whereas

(a + b) + c  a + (b + c), (not associative) EQ. 15-12

Therefore, you must take care in forming block diagrams that perform such opera-
tions.
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The non-associativity of the elementary algebraic operations implies that the com-
putation order must be defined for these operations. For example, does a summa-
tion block that adds up three variables a, b, and c perform:

(a + b) + c EQ. 15-13

a + (b + c) EQ. 15-14

or (a + c) + b? EQ. 15-15

To provide a consistent answer to this question, SystemBuild algebraic blocks are
organized such that the operation order is the same as the order that the connection
editor assigns to the input pins. Thus in the Summing Junction example the signal
connected to input pin (1) is added to the signal connected to pin (2) first, and then
the result is summed with the signal that is connected to pin (3) (see Figure 15-16).
This can have a profound impact on the final operation result as it is possible to en-
hance the precision or even avoid dealing with overflow as in (1) under
Example 15-12 below,

EXAMPLE 15-12: Possible Implementations of the Expression a+b+c

Figure 15-15 shows two of the three possible implementations of the expression
a+b+c. This figure assumes that Type(a):= SB3, Type(b):= SB4, Type(c):= UB3, and
that any summation block output datatype is SB3.

In this set-up, it is easy to see how the different implementations may produce dif-
ferent results: assume a = -14.75, b = 6.75, and c = 14.75. Then, using the summa-
tion rules for fixed-point datatypes, the implementation of a+b+c as (a+b)+c would
yield:

a + b = -8, (a + b) + c = 6.75

Whereas the implementation of a+b+c as a+(b+c) results in:

b + c = 15.875,   (b + c = 21.5 but SB3 saturates at 15.875)
a + (b + c) = 1.125
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1. Now assume that only one summation block is used to realize the sum. Then,
the equivalent implementation to that of (1) would be as shown in Figure 15-16
on page 15-31.

Now we have:

(a + b) has the IType SB2
a + b = -8,
(a + b) + c = 6.75

which shows no loss of precision.

2. The SystemBuild implementation of the fixed-point operations is based on the
saturation arithmetic approach. This means that when results of operations
overflow the limits of prescribed output datatypes, the result is a value that is
clipped at the appropriate limit of that datatype.

3. 32 bit multiplication and division are dealt with differently in fixed-point arith-
metic. This is explained in 32-bit Operation Issues, below.

4. Some of the blocks that are supported in fixed-point have parameters. For the
block operation to be defined fully these parameters require types. In all blocks,
with the exception of the Gain block, the parameter datatypes are derived from
input and/or output types as explained in Table 15-1 on page 15-23. The Gain
block exception is explained in Gain Block: A Special Case on page 15-32.

FIGURE 15-16 Adding Three Operands
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32-bit Operation Issues

The operations of 32 bit multiplication and division are different from their 8 bit and
16 bit counterparts, because the maximum wordsize available is only 32 bits and
therefore operands cannot be promoted to a higher wordsize before performing mul-
tiplication or division.

In 32-bit multiplication, if the sum of the radix positions of the operands is greater
than that of the destination radix position, then the operands are shifted right or left
so that when the two operands are multiplied they produce a result that conforms
to the radix position of the destination (the radix position of the destination need not
be the same as the radix position of the result). This is done in order to lessen the
chance of overflowing during multiplication (i.e., shifting significant bits out of the
register to the left), although it cannot always prevent overflow from occurring. Also,
while shifting right, the operands can lose precision (i.e., shift significant out of the
register to the right), and this can reduce the accuracy of results. If the sum of the
radix positions of the operands is less than that of the destination, then the oper-
ands are multiplied and the result is aligned with the destination radix position. The
result value gets clipped if overflow occurs when it is aligned with the destination.
This does not always prevent overflow from occurring, because the result of the
multiplication itself could overflow.

In 32-bit division, if the radix position of the dividend is greater than that of the di-
visor, the operands are divided and the result is aligned to the radix position of the
destination. If the radix position of the divisor is greater than that of the dividend
then the divisor is shifted right so that it gets aligned with the dividend. The result
of the division is aligned to the radix position of the destination. Shifting right might
result in zeroing of the divisor. If this happens, depending on the sign of the divi-
dend, the extremal value that can be represented in 32 bits is returned. Without
this adjustment, when shifting right, the divisor might lose precision and impact the
accuracy of the result.

Gain Block: A Special Case

The Gain block is among the most commonly used, and most frequently parameter-
ized, blocks in the Integrated Systems block library. Partly for this reason, for all its
apparent simplicity, the Gain block represents a special case in fixed-point arith-
metic. The exception regarding this block is that a user can optionally specify the
Radix Position for the gain parameter, if the inputs and outputs of the block are
fixed point. This feature is useful for defining datatypes with headroom for possible
calibration using Run-time Variable editing. See Example 15-13 on page 15-33.
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The fixed-point datatypes are defined by three variables: signed or unsigned, length,
and Radix Position. In setting the datatype of the Gain block, the variables are gov-
erned by the following considerations:

■ Whether the gain parameter is signed or unsigned is defined by the sign of the
parameter.

■ The wordsize of the parameter is defined by the input datatype.

■ By default, the Radix Position of the gain parameter is derived by “shrink wrap-
ping” the user-supplied value of the gain parameter. This means that the Radix
Position is chosen to give the minimum loss of precision (truncation of less sig-
nificant bits) with no loss of significance (truncation of more significant bits).

15.3.2 Radix Calculations

If you specify an unsigned short as the output type of a Gain block, and place the
number 3.1 inside it, the assigned radix will be = 14.

If you specify the Output datatype of the Gain block as fixed-point, the Parameters
tab in the block dialog offers a Define Radix binary field with a default value of no. If
you click to change this value to yes, a Gain Radix field appears, allowing you to spec-
ify a value for the Radix Position of the gain parameter. The only restriction on this
value is that it must be consistent with the wordsize and Sign status of the gain pa-
rameter, which are the same as the wordsize and the sign of the parameter.

Define Radix Position used in conjunction with RVE helps you interactively estab-
lish an optimal fixed datatype for a given parameterized Gain block. The operation of
the Define Radix Position feature is illustrated in Examples 15-13 below and 15-14
on page15-36.

EXAMPLE 15-13: Building and Exploring Gain Blocks with Define Radix Position

In this example we build up a block diagram with %Variable Gain blocks that have
different Gain Radix Positions, and compare the outputs of the blocks with gain val-
ues chosen to illustrate the effects of appropriate and inappropriate choices of Gain
Radix Positions.
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1. Create a new SuperBlock and name it test3 . Make it discrete and accept the
default Sampling Interval of 0.1. We will set the datatypes later. Start building
the model shown in Figure 15-17.

2. Name the first block r5. Make the Gain 1.3, and the parameter j. Type ctrl-p to
send the variable to Xmath. Click the Outputs tab and change the Output Type to
Signed Byte and the Output Radix to 6. Return to the Parameters tab and observe
that Define Radix: No appears. Click no to Yes. The Gain Radix field appears; make
the gain radix 5. Click OK.

3. For the second block duplicate the steps for the first, except name the block r6
and specify a gain radix of 6. Although the value of the gain is also 1.3, we can-
not use the same variable because the radix is different. Name the gain variable
k, and type ctrl-p to save the value to Xmath.

4. Set the SuperBlock Input Data Types . Press the left mouse button on the SuperBlock
ID bar, and hold it until the SuperBlock Attributes dialog appears. Click Inputs
and change the Input Type to SignedByte. Press Return and change the Input Radix
to 6. Click Input Number to change the 1 to 2, then change the Input Type to Signed-
Byte, and change the Input Radix to 6. Make all data types must be the same.

5. Make the Output Data Type of the Summing Junction Signed Byte with an Output Ra-
dix of 6. Name the summing junction “difference”.

FIGURE 15-17 Gain Block Radix Example
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6. Prepare for simulation. In the Xmath command area, type:

t = [0:.1:10]';
u = [sin(t), sin(t)];

7. Simulate model with the following command:

sim("test3",{time=t,input=u,ialg="ALG",fixpt=1,fixpt_round=1,
  minmax="minv",graph=1,typecheck=1,simtimer=1,initmode=0})

8. The plot should look like Figure 15-18.

FIGURE 15-18 Plot Comparing Different Gain Radix 5 vs. 6
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The spikes in the top strip of Figure 15-18 on page 15-35 reflect the differences be-
tween the quantized sine waves in the two other strips. The distribution and heights
of the spikes are caused by a combination of quantization factors:

■ The sine waves were quantized on input (rounded), being converted to different
datatype fixed-point numbers.

■ Both input sine waves were multiplied by 1.3, which was variously expressed as
two fixed-point numbers of different datatype: 1.296875 (Radix 6), and 1.3125
(Radix 5).

■ The two sine waves were subtracted, with the result quantized to radix 6.

■ Finally, the difference was converted to floating-point for output and display.

EXAMPLE 15-14: Overflow Caused by Gain Values

For this example, we will use the same model, but use a different gain value that
will force overflow on one of the channels of comparison.

1. Display the model from Figure 15-17 on page 15-34.

2. Change the values of the gains:

j = 2.6;
k = 2.6;

3. Run the simulation again with the t and u values from step 6 on page 15-35
and the sim command from step 7.

4. The plot should look like Figure 15-19 on page 15-37.

Observe what is happening. The new gain value, which is a fixed-point number
approximately 2.6 (actually 2.59375), when multiplied by the numbers from the
u-vector (sine wave) at its extremal values, produces an overflow in the block
whose datatype is SB6 and therefore whose range is [-2: 1.984375]. The other
block, whose datatype is SB5, has a range close to [-4: +4], and therefore does
not overflow at these values. You can see the effect of overflow clearly enough by
looking at the bottom strip in Figure 15-19, and you can see the approximate
amount of the overflow in the top strip.
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1515.4 MinMax Data Logging

The MinMax data logging tool keeps track of the range of values output by each
block. When the MinMax feature is on, the simulator stores the first occurrence of
the maximum and minimum values for each block. During fixed-point simulations,
the tool also records the first occurrence of an underflow or overflow in the block
calculations, and the overflow protection status. After simulation, the results are
transferred over to Xmath and stored in a special MinMax dataset. The name and
partition location of the dataset are user-defined. The data in the list is available for
direct manipulation, for example, it can be used for post-simulation processing and
analysis.

Once the dataset is created it can be viewed with the minmax_display GUI interface.

FIGURE 15-19 Plot of Gain Radix Positions with Overflow.
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Restrictions:

■ No continuous SuperBlocks.

■ Will not work with the resume  keyword in simulation.

15.4.1 Activating MinMax Logging

In the simulation parameters dialog, enter a variablename (or partition.vari-
ablename ) into the MinMax Variable field. When you click OK, the simulation occurs
and the MinMax information is copied into an Xmath List Object (referred to as a
Dataset), with your specified name.

Simulating with the minmax Keyword

the sim keyword minmax takes a string specifying the name of the Xmath dataset
used for storing the MinMax data. For example,

y = sim("Top", t, u, {minmax = "test1"});

or, to include a partition

y = sim("Top", t, u, {minmax = "partitionname.test1"});

Note, MinMax display is not supported with standalone simulation.

Saving MinMax Datasets to a File

Datasets are stored as Xmath List variables. Like any other Xmath variable, they
can be save to a file with the save command. If you are saving a catalog object from
the Catalog Browser, be sure to include Xmath data if you want to preserve your
dataset.

15.4.2 MinMax Display Tool

The MinMax Display tool allows you to display minimal and maximal values of sig-
nals from a simulation run. Timing and overflow information are also displayed. To
launch MinMax, type the following in the Xmath command area.

minmax_display
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To load a dataset for display, select Special→Load. The Load window displays the
name of the current partition, and all datasets available within it. The partition can
be changed. Select a dataset then press Load. Press Done when you are finished.

The MinMax Tool is shown in Figure 15-20.

SuperBlocks that have MinMax information loaded and available to be displayed are
listed in the SuperBlocks area. Child SuperBlocks are indented directly below their

FIGURE 15-20 MinMax Display, Simple Overflow (Figure 15-19 Example Shown)
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parent SuperBlocks. Each block number is part of the name for unique identifica-
tion, because two SuperBlock instances can have the same name.

The Blocks field displays the blocks in the selected SuperBlock. Two numbers (or
blanks) may be displayed for each block: the time of the first overflow and underflow
of the block. The Protection field indicates whether the Overflow Protection feature
(on the Output Tab) was enabled at simulation time; No indicates it was disable,
and an empty column indicates it was enabled. The output information for the block
you select will be displayed in the Dataset  field.

For each output, the Dataset field displays the selected block’s name, datatype, the
initial minimum and maximum values, and the times they occurred.

Display Options

Choose Select→Output Display to change the display options. After making any
changes, click UPDATE to see the new display. Display options stay in effect until they
are changed.

If Display SuperBlock is checked, the window containing the selected SuperBlock will be
raised whenever it is selected in the MinMax dialog.

15.5 User-Defined Data Types (Usertypes)

As a convenience in situations where multiple datatypes are required, you can as-
sign your own meaningful names to datatypes, called User-defined datatypes or
Usertypes. You can use these names in all the block datatype information dialogs. A
special editor is provided to let you change the meaning of a custom datatype.

15.5.1 Usertype Editor

The Usertype editor provides an interactive interface for usertype creation, modifica-
tion and deletion. This tool is launched from the Xmath command window. Before
launching, make sure that the numerical display format is set to compact. To view
the current format, type SHOW FORMAT. If the format is not compact, type:
SET FORMAT COMPACT.

To launch the Usertype editor, type:

usertype

The Windows implementation of the Usertype editor is shown in Figure 15-21; the
UNIX version has the same fields, organized in the same manner, but its appearance
is slightly different.
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On the left side, a scrolled list displays all currently defined usertypes. The buttons
on the lower right can update or delete the selected variable.

To create a new usertype  — First type the usertype name in the Name field and press Re-
turn . Then choose the datatype for the new usertype. When you are satisfied with
the usertype name and datatype, click the Update button. The new usertype ap-
pears in the scrolled list on the left side of the usertype editor window.

To modify a usertype  — select the usertype name on the scrolled list with a single mouse
click. You should see the name of the usertype filled in the Name field. Select the
new datatype, and click Update .

To delete a usertype  — select the usertype name on the scrolled list with a single mouse
click. Click the Delete button at the lower left of the window.

FIGURE 15-21 Usertype Editor
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15.5.2 Usertype MathScript Commands

A set of Xmath commands provide the same functionality as the Usertype editor. See
the online help for more information on each command. Try typing the commands
in Example 15-15.

EXAMPLE 15-15: Using Usertype MathScript Commands

createusertype "test1", {float}
createusertype "test2", {integer}
createusertype "test3", {wordsize = 16, radix = 4, signed = 1}
listusertype
modifyusertype "test2", {logical}
listusertype
modifyusertype "test2", {wordsize = 8, radix = 3}
listusertype

15.5.3 Using Usertypes in SystemBuild

Usertype information is located wherever datatype information resides. Typically
you have an opportunity to enter an output usertype on a block dialog’s Outputs
tab, as shown below.

createusertype Creates a new usertype definition.

modifyusertype Changes the datatype of a usertype.

deleteusertype Deletes a usertype.

listusertype Lists out all defined usertypes in the Xmath Window.
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To enter a usertype, you can type its name in the field, or make a selection from the
drop-down menu.

■ Any usertypes available in the current catalog will be listed on the usertype
menu. If a usertype is illegal in the current context it will be marked (Invalid), as
shown above).

■ Once a usertype is entered, other datatype items become read only.

EXAMPLE 15-16: Creating and Using a Usertype

1. Create a usertype named test1.

2. Create a Gain block model. Go to the output tab. Enter the usertype name
test1 in the field named Output UserType.

3. Click DONE to close the block.

4. Go the usertype editor. Change the datatype of test1 .

5. Open the Gain block again. Inspect the output datatype. It should be updated to
the new usertype definition.

If a usertype is deleted, but still referenced in a block, the last value of the usertype
will be used.

15.5.4 Storing Usertypes

Usertypes are optionally stored in the SystemBuild model file.

The SystemBuild SaveAs and Load dialogs allow you to choose whether to save or
load all usertypes, or none at all.

An Xmath keyword, usertype , is provided to let you control the loading and saving
of usertypes . The usertype keyword indicates that only usertype data should be
saved. Specifying {!usertype} indicates that only Xmath data and SystemBuild
catalog data should be saved.
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15.6 SystemBuild Functions in Fixed-point

15.6.1 Linearization Function

When a SystemBuild model is linearized in the fixed-point mode, the following steps
are performed by the program:

1. The system parameters (i.e. parameters defined in the block forms of each block
in the model) are quantized according to their fixed-point datatypes.

2. The operating point inputs and state (i.e., system initial conditions) are quan-
tized according to the fixed-point rules.

3. A finite-difference linearization is performed by perturbing the states and inputs
in the quantized model. The perturbation calculations are done in floating-point
arithmetic.

By linearizing a model first in floating-point (i.e. floating-point parameters) and com-
paring the results to the linearization in fixed-point as above, one can observe the
quantization effects on the model. Especially important is whether the system eigen-
values after the quantization are still stable (on or inside the unit circle for discrete
models).

The linearization of a multirate discrete model in the fixed-point mode is also done
in a similar way:

1. The model parameters and the operating point are quantized.

2. Model is simulated in floating-point with state and input perturbations.

3. Linearization is calculated from the simulation data.

For more details on how multirate linearization is done, see Section 9.6 on page 9-7.

15.6.2 Simout Function

The simout  function performs the following:

[x, xdot, y] = simout("model", {fixpt, other options})

The calculations for the output y are fixed-point computations. The states x are ex-
tracted from the model after they are quantized according to their datatypes. How-
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ever, for the calculation of xdot , the computation is done in floating-point. xdot is
the “pseudo-rate”, which is computed from

EQ. 15-16

In this computation, x[k+1] is calculated from f(x[k], u[k]) as a fixed-point calcula-
tion. On the other hand, ∆T is the sampling time, which is a floating-point number.
The xdot calculation is done in floating-point (that is, no roundoffs) to allow a user
to extract x[k+1] from it.

15.7 Scaling Aid Blocks

For your convenience in scaling your model, a special set of scaling aid icons has
been added to the palette of ISIM icons. The scaling aid icons are found in the FI
ISIM subpalette. See Figure 15-22.

The top left icon is a scaling aid. This icon uniquely allows you to generate a gain
value that can be presented to your model during the simulation run, and to monitor
an output from the model in the same time, recording its maximum and minimum
values as you proceed.

x k 1+[ ] x k( )–
∆T

----------------------------------------------

FIGURE 15-22 Scaling Aid Icons
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16 Building Custom Icons

16.1 IA Basics

Interactive Animation (IA) is a graphics language for creating icons for display in the
SuperBlock editor. For example, the icon displayed on a block in the editor (as op-
posed to blocks on the Palette Browser, which are bitmapped) are defined with the
IA graphics language. Beyond this, IA icons have the ability of controlling inputs to
and displaying outputs from a simulation while it is running.

■ A simple use for the IA language is to create a static picture to display in the
SystemBuild editor. Anyone with a SystemBuild license can use the IA language
to create a custom block icon.

■ The Interactive Animation module requires a separate license. It gives you the
capability to create and compile custom icons using the IA Builder and provides
additional tools to aid in creating icons and grouping them on new or existing
palettes or combining them to produce control panels. Compiled IA source code
takes the form of .sog files. A .sog file can be attached to a custom block via a
reference on the Icon tab.

Note that you must have a license for the IA module to reference .sog files. For
more information about IA, including use of the IA Compiler, see the Interactive
Animation User’s Guide.

All users can view IA palette(s) from the SystemBuild editor; click on the IA icon in
the editor toolbar.

■ If you do not have an IA license, a single palette of ISIM icons will be displayed.

■ If you are licensed for the Interactive Animation module, clicking IA provides ac-
cess to a set of five default palettes.
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16.1.1 Adding a Custom Icon to a Block Diagram

There are several ways to add an icon to a block diagram:

All users can:

■ Type icon source code into the Icon tab, then set the block icon type to Custom to
see the new icon (Section 16.2.2).

■ Reference or import an external bitmap (Section 16.2.1).

Users with an IA license can:

■ Attach an icon to a block’s custom view by specifying the name of a precompiled
icon .sog file in the Icon tab. The Icon tab must contain the ICON_SOGF: com-
mand and the ICON_NAME: command, each pointing to an icon that exists on
your system and is also specified in your animation.cfg . file. (Example 16-2
on page 16-6)

■ “Drag and drop” an IA or ISIM icon from the Interactive Animation palette and
place it, centered approximately, on the block icon to which it is to be attached
(Example 16-3 on page 16-7).

16.1.2 Sample Icon Source

To view examples of icon source code, look at the source files that create the five
main palettes delivered with IA. Each file contains all icon definitions for an existing
IA palette. These files are typical of the resources found in $SYSBLD/src .

moni.src Monitor Animation Icons

coni.src Controller Animation Icons

graf.src Graphic Shapes Icons

spec.src Special Animation Icons

orig.sr c Original Animation Icons
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Precompiled .sog versions of these files are found in $SYSBLD/etc . Alarm.sog
becomes the sixth palette when alarm processing is turned on in the local anima-
tion.cfg file. Other files found in $SYSBLD/etc  are:

■ isim.sog , which contains the limited icon set provided for SystemBuild ISIM.
No .src file is furnished for this icon set because it is not designed to be user-
modifiable.

■ control.sog, which defines the IA Builder Control Panel. In $SYSBLD/src ,
the file control.src is provided, to allow you to rearrange the control panel.
Make copy of control.src and proceed with caution when rearranging the
control panel.

16.2 Defining Custom SystemBuild Icons

You do not need to be licensed for IA to define your own icons. The Icon tab in the
dialog box of any primitive block can be used to define your own icon design, or, ref-
erence or import an external bitmap.

16.2.1 Importing or Referencing an External Bitmap

You can assign a bitmap display to a block icon. The bitmaps may be BMP, XPM,
GIF or JPEG format. Any size bitmap may be used. It’s up to the user to size the
block in a way that best displays the bitmap. A bitmap can be referenced as an ex-
ternal file or imported into the block diagram.

If you reference an external bitmap, the SystemBuild data file only stores the file
path, and loads up the bitmap when needed. The Icon tab syntax is:

FILE_BITMAP 'path_to_file' [xloc yloc xsiz ysiz]

An imported bitmap becomes part of the diagram. To import an internal bitmap, the
command is:

IMPORT_BITMAP 'path_to_file' [xloc yloc xsiz ysiz]

In both cases [xloc yloc xsiz ysiz] are specified in IA graphical units. An IA
graphical unit is approximately the size of one pixel. xloc and yloc specify the bit-
map location within the icon. xsiz and ysiz specify the dimension of the bitmap in
graphical units. If the icon is zoomed or reduced in the editor, the size of a graphical
unit scales accordingly.
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Alternatively, you can specify an icon interactively. In the Icon tab, go to the Gener-
ate Bitmap command area.

Select either File or Import, then click the Browse button. Locate the desired file,
then double-click on it. When the file is found, the proper IA source will be gener-
ated in the Custom Icon text field.

On the Display tab, change the Icon Type to Custom to view the new icon.

16.2.2 Creating or Attaching an IA Source Icon

When you click OK to release the dialog, the SystemBuild program compiles your IA
Graphics language statements. If the icon code is syntactically correct, SystemBuild
will display the image you have defined. This image will be displayed when the Icon
Type is set to Custom . In the absence of any BEGIN or ENDsection statements, your
statements are assumed to be in the static graphics section by default. See
Section 16.3 on page 16-8 for the sections of the icon definition. Note that changing
the icon display of the block has no effect on the block’s operation or parameters.
See Example 16-1.

EXAMPLE 16-1: Making Your Own Custom Icon

In this example we describe a custom block, compile it, and display it in a block di-
agram model. Note, a custom icon is for display purposes only; it has no functional-
ity.

1. Load the following file:

$SYSBLD/examples/auto/cruise_d.cat.

2. Open the SuperBlock continuous_automobile.

3. When the car model appears, select the ‘engine’ block (a Limited Integrator) and
press Return  to open the dialog; select the Icon tab.
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4. In the Icon Tab, type the following:

DRAW_RECT 100 100 800 800
SET_TEXT_FONT 14
DRAW_TEXT 500 500 22 '427 CID V8'

NOTE: By default these commands are in the static graphics section of the
icon definition.

5. Click OK to release the block and compile the icon. Place the cursor over the
block and press the S key until the icon type changes to Custom . See Figure 16-1
for the appearance of the new icon in the block diagram, along with the Icon tab
contents.

When the icon appears, it may appear too small or may be hard to read. Grab
the ID area in the upper right corner and drag in any direction necessary to re-
move the distortion.

Note that if you attach a custom icon to a block, the code defining the custom icon
appears in the block dialog Icon tab from that time forward. Also, you can attach a
custom icon to a block by placing the identification of the .sog file that holds the
block definition and the name of the block into the Icon tab. See Example 16-2 for at-
taching a custom icon.

FIGURE 16-1 A User-Defined Icon and Its Description On the Icon Tab
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EXAMPLE 16-2: Attaching a Precompiled .sog  File Icon by Name and Filename

In this example we attach an ISI-supplied custom icon (strip chart) to a primitive
block (Gain block) by placing its filename and icon name in the primitive block’s
Icon tab. When selected as a custom icon, the strip chart displays a history of the
outputs of the Gain block.

1. In the continuous_automobile model, click to open the accelerometer block’s di-
alog. This is the Gain block with ID 6.

2. In the Icon  field, type:

ICON_SOGF: MI
ICON_NAME: SC1

3. Click OK to release the dialog. If the strip chart does not appear immediately,
place the mouse cursor on the Gain block and press the s key a few times until
the strip chart is seen. See Figure 16-2 for a view of this icon and the dialog box
with the .sog  file and icon name.

A third method for attaching a custom icon to a primitive block is by drag-and-drop.
Example 16-3 on page 16-7 illustrates how this is done.

FIGURE 16-2 Strip Chart Icon Attached to a Primitive Block
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EXAMPLE 16-3: Attaching a Custom Icon Using Drag-and-Drop

This example assumes that you have access to the full IA palette, including the
1973 Corvette icon. If you do not have access to this palette, you can substitute any
standard ISIM icon. Note, the custom icon has no functionality; it merely changes
how the model looks.

1. With the continuous_automobile model displayed, click on the IA icon in the ed-
itor tool bar.

2. When the palettes become available, click SP to obtain the Special Icons palette.

3. When the Special Icons palettes appear, drag the automobile icon until it is just
centered over the Car Inertia block. To perform the centering accurately, you
may want to select the Car Inertia block first, so that you can see the exact
block outlines. See Figure 16-3 for this method.

4. As can be seen from Figure 16-3, the icon, once dropped in place, may appear
distorted. Press and hold to grab the ID area in the upper right corner and pull
in any direction necessary to correct the distortion.

5. Open the block dialog and click on the Icon tab observe the code produced by
this action.

FIGURE 16-3 Attaching a Custom Icon by Drag-and-Drop
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16.3 An Icon Source File

The format for a source file containing a single icon appears in Example 16-4 below.
Keywords are CAPITALIZED . Parameters follow keywords and are shown in lower
case courier . For example, the keyword DRAW_TEXT has four parameters:

DRAW_TEXT x y mode strings

In source files, parameters are typically integers or reals; string parameters are en-
closed in single quotes ('') . You must provide a value for a parameter, even if it’s
zero. Comments are shown in the normal text format.

The IDENTIFICATION shown in the third line of Example 16-4 furnishes an abbre-
viation for the palette name (“MY” in the example), followed by a slash (“/”) separa-
tor, followed by a name that is used to identify the palette in the icons data base
(“MY animation icons” in the example).

The icon definition arguments (❶ through ➏ in Example 16-4) are discussed in
Section 16.3.1 on page 16-10. Sections are limited with BEGIN and END; you need
not specify all sections. Section syntax and parameter explanations are discussed in
Section 16.3.6 on page 16-19.

EXAMPLE 16-4: Icon Source File Format

WS_DRAW ICON DEFINITION SOURCE FILE VERSION 4.00
C
IDENTIFICATION: 'MY/MY animation icons'

BEGIN_ICON
ICON_TYPE: number ❶
ICON_NAME: 'Character string in single quotes'
ICON_PRIVILEDGE: priviledge ❷
ICON_WIDTH: width ❸
ICON_HEIGHT: height ❹
INTEGER_VARIABLE: number ❺ initial value  ➏'Form Prompt'
REAL_VARIABLE: number initial value 'Form Prompt'
STRING_VARIABLE: number initial value 'Form Prompt'
ANIMATION_POINTER: number 'Form Prompt'
OUTPUT_POINTER: number 'Form Prompt'
STATE_POINTER: number 'Form Prompt'
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BEGIN_INITIALIZATION_SECTION
C     Insert commands to be performed before static draw.
C     The following commands are allowed:
C       if/else/endif;
C       calculate;
C       sound_bell;
C       sound_key_click;
C       do/enddo;
C       math_function;
END_INITIALIZATION_SECTION

BEGIN_BACKGROUND_SECTION
END_BACKGROUND_SECTION

BEGIN_STATIC_GRAPHICS
C Insert all static commands performed only at initial window
C     Insert non-graphic commands to be performed even if the
C     window is not displayed (the window must be loaded,
C     however). Typically this section is not used. Background
C     processing only works through the USRIA1 interface (USRA1
C     UCB and RTMPG,not in ISIM.)
END_STATIC_GRAPHICS

BEGIN_ANIMATION_GRAPHICS
C     Insert commands updated at each data cycle.
END_ANIMATION_GRAPHICS

BEGIN_POINTER_ACTION
C     Insert commands performed when the user clicks on the icon.
END_POINTER_ACTION

BEGIN_FORM_DEFINITION
C     Form definition for the icon.
END_FORM_DEFINITION

END_ICON

BEGIN_PALETTE_DEFINITION
C     The palette definition occurs once
C     at the end of the source file.

END_PALETTE_DEFINITION
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16.3.1 Icon Identification

This section lists the possible parameters for each keyword in the identification por-
tion, which immediately follows the BEGIN_ICON keyword (see ❶ on page 16-8).
When defining your own icon, do not use tabs to indent any portion of your code. Use
spaces only.

16.3.2 Types

The following types are possible for integers, reals, and strings. Any variable can be
replaced by an expression that reduces correctly to the appropriate type of variable.

Integer Types

Hardcoded Integer

Real Types

Hardcoded Real

❶ Icon_Type is the icon identification number for each icon. This number will
be used in the PALETTE_DEFINITION  section. If you have changed the
IDENTIFICATION  field page 16-8), and thus changed the name of the pal-
ette, you may use sequential integers (1...n) for your icons.

❷ ICON_PRIVILEDGE is normally set to 0.

❸ ICON_WIDTH gives the icon box width in IA graphical units (100 ~ 1 cm).

Normally an IA graphical unit is approximately one pixel, however, if the icon
is zoomed or reduced the size of a graphical unit varies accordingly.

❹ ICON_HEIGHT gives the icon box height in pixels (100 ~ 1 cm).

❺ A number you assign the declared variable. You refer to the variable using
the format Type[#] where Type is usually a unique character specifying the
type of integer, real, or strings. Types are discussed in Section 16.3.2.

➏ Initial value can be '##'  where ## is the number of characters.

I[#] Integer Variable

R[#] Real Variable

A[#] Animation Pointer (to input vector)

O[#] Output Pointer (to output vector)

T[#] Time & Hold Information (pointer to t-vector)
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String Types

Hardcoded String

Typically variables are declared at the top of the icon source file (see Example 16-4
on page 16-8); each separate type is numbered sequentially starting with 1. For ex-
ample, to define a string variable numbered 17, specify S[17].

16.3.3 General Control and Calculation Statements

The following keywords and their parameters can be used in the
ANIMATION_GRAPHICSand STATIC_GRAPHICSsections. Note the use of the RE-
TURNcommands in a few places in these examples. You may use RETURNat appro-
priate places in your code to force a return; executing the last keyword of a section
has the same effect.

S[#] String Variable

TABLE 16-1 Control and Calculation Keywords

Syntax Example

CALCULATE v1ptr = fun v2ptr v3ptr
CALCULATE v1ptr = v2ptr

CALCULATE I[3] = I[4] + I[5]
CALCULATE I[3] = I[4]

MATH_FUNCTION v1ptr = fun v2ptr v3ptr MATH_FUNCTION R[1] = ATAN2 [R[2] R[3]

IF value relation value THEN
ELSE

ENDIF

IF I[3] < 10 THEN
your_statements

ELSE
your_statements

ENDIF

IF value relation value THEN
RETURN

ENDIF

IF I[2] EQ 1[5] THEN
RETURN

ENDIF

DO variable start end inc
RETURN

ENDDO

DO I[2] 1 5 1
Your_Statement

ENDDO
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CALCULATEfunctions use the pointers v1ptr , v2ptr , and v3ptr . Pointers can be
reals, integers, or strings. CALCULATEfunctions can be used in any section of a pro-
gram.

MATH_FUNCTION v1ptr = function v2ptr v3ptr

The ATAN2 function uses v3ptr .

MATH_FUNCTIONs are:

IF value relation value THEN
ELSE

ENDIF

IF / THEN values can be real or integers; strings are also possible.
Possible relations are:

DO variable start end inc
RETURN

ENDDO

variable is an integer representing the counting variable. start and end are the
beginning and ending values in the loop, and inc  is the counter increment.

+ Add

- Subtract

* Multiply

/ Divide

AND Logical Operation

OR Logical Operation

MAX Maximum of the two args (strings OK)

MIN Minimum of the two args (strings OK)

SIN COS TAN SQRT ABS

ASIN ACOS ATAN ATAN2

EQ or = GE or >= GT or >

NE or <> LE or <= LT or <
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16.3.4 General Graphic Statements and Coordinate System

These keywords and their parameters can be used in the ANIMATION_GRAPHICS
and STATIC_GRAPHICSsections. Properties of things drawn with general graphic
statements are determined by the general graphic characteristics settings (see
Section 16.3.5). Objects are located via a coordinate system that defines 0,0 as the
lower left corner of the screen, and entities within an icon are located using a simi-
lar coordinate system that defines 0,0 as the lower left corner of the icon. See Exam-
ples 16-5 through 16-16.

EXAMPLE 16-5: Graphics Draw Rectangle Statement

DRAW_RECT x1 y1 width height

Draws a rectangle where x1 and y1 designate the lower left rectangle corner, and
width and height are the rectangle dimensions, all expressed in terms of the icon
coordinate system. By default, the icon dimensions are 1000 × 1000; these values
can be reset using the ICON_WIDTH and ICON_HEIGHT keywords.

DRAW_RECT x1 y1 width height

DRAW_TEXT x y justify strings

ERASE_TEXT x y justify strings

GET_TEXT_SIZE string R[width] R[height]
Returns the width and height of the string in IA
graphical units.

DISPLAY_VALUE iptr x y width dplaces justify

ERASE_VALUE x y width dplaces justify

DRAW_ARC xc yc xr yr start end

DRAW_LINE npoints x1 y1 x2 y2 ... xn yn

ROTATE_LINE ptr  xc  yc npoints  x1  y1  x2  y2...xn yn

RELATIVE_POSITION_LINE xd  yd npoints  x1  y1 x2  y2 ...

GENERAL_LINE npoints x1 y1 x2  y2 ... xn yn

VARIABLE_SIZE_BOX dir iptr x1 y1 v1p x2 y2 v2p

VARIABLE_POSITION_LINE dir iptr x1 y1 v1p x2 y2 v2p
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EXAMPLE 16-6: Graphics Draw Text Statement

DRAW_TEXT x y justify string

Draws the text string starting at the point specified with x and y . (The font is de-
termined by SET_TEXT_FONT, described on page 478.n.) The text is aligned on that
point according to the justify parameter. This parameter is a 2 digit value where
the tens column aligns horizontally and the ones column vertically.

For example, if justify is 21 the string will be drawn centered on the starting
point and top-aligned, because a 2 was in the tens column and a 1 was in the ones
column.

EXAMPLE 16-7: Graphics Erase Text Statement

ERASE_TEXT x y justify strings

Erases a string created by DRAW_TEXT when given exactly the same parameters.

EXAMPLE 16-8: Graphics Display Statement

DISPLAY_VALUE iptr x y width dplaces justify

Displays a value iptr at the point specified by x and y . Placement is determined by
the parameters width (the number of characters), dplaces (decimal places) and
justify  (you supply the same 2-digit code value used for DRAW_TEXT justify ).

justify
digit

horizontal
(tens)

vertical
(ones)

1 left top

2 center center

3 right bottom
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EXAMPLE 16-9: Graphics Erase Value Statement

ERASE_VALUE x y width dplaces justify

Erases a value created by DISPLAY_VALUE when given exactly the same parame-
ters.

EXAMPLE 16-10: Graphics Draw Arc Statement

DRAW_ARC xc yc xr yr start end

Draws an arc centered on the point specified by xc and yc . xr and yr describe the
radius of the arc and start and end give the angle in degrees at the start and end
of the arc. The keyword SET_ARC_TYPE(see page 478.n) determines the fill pattern
for the arc.

EXAMPLE 16-11: Graphics Draw Line Statement

DRAW_LINE npoints x1 y1 x2 y2 ... xn yn

Draws a fixed line based on coordinate pairs of x ,y values, where npoints is the
number of break points in the line and an x ,y coordinate pair is specified for each
point in the line. During simulation, if you wish to be able to change the angle, dis-
placement, or scale of the line, use GENERAL_LINE instead.

EXAMPLE 16-12: Graphics Rotate Line Statement

ROTATE_LINE ptr  xc  yc npoints  x1  y1  ... xn yn

Does what DRAW_LINEdoes but adds the ability to rotate the line centered on the
point specified by xc and yc . ptr is the number of degrees of rotation counterclock-
wise from the horizon (i.e., the positive part of the x-axis).
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EXAMPLE 16-13: Graphics Relative Position Line Statement

RELATIVE_POSITION_LINE xd  yd npoints  x1  y1 x2 y2 ...

Does what DRAW_LINEdoes but adds the ability to place the line relative to the
point specified by xd  and yd  (the coordinate displacement in IA graphical units ).

EXAMPLE 16-14: Graphics General Line Statement

GENERAL_LINE npoints x1 y1 x2  y2 ... xn yn

Draws a line based on coordinate pairs of x ,y values, where npoints is the number
of segments in the line and an x ,y coordinate pair is specified for each point in the
line. A general line can be manipulated with the SET_ANGLE, SET_SCALE and
SET_DISPLACEMENT settings in Section 16.3.5.

EXAMPLE 16-15: Graphics Box statement

VARIABLE_SIZE_BOX dir iptr x1 y1 v1p x2 y2 v2p

Defines a rectangular area whose lower left corner is specified by x1 ,y1 and whose
upper right corner is specified by x2 ,y2 , then fills a portion of that area, creating a
box. iptr points to a value you have calculated, indicating the percentage of the
box defined by the x and y values. The box is created by filling a portion of the area
delimited according to v1p , the minimum range, and v2p , the maximum range;
these parameters are usually values you have calculated elsewhere. dir can be ei-
ther 'HOR' or 'VER' , specifying that the filling will proceed horizontally or verti-
cally from the lower left corner of the area until the portion of the area specified with
v1p , v2p  is filled.

EXAMPLE 16-16: Graphics Variable Position Line Statement

VARIABLE_POSITION_LINE dir iptr x1 y1 v1p x2 y2 v2p

Does what VARIABLE_SIZE_BOX does, only draws a line in the defined area (rather
than filling a box).
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16.3.5 General Graphic Characteristic Statements

These keywords and their parameters can be used in the ANIMATION_GRAPHICS
and STATIC_GRAPHICS sections.

SET_COLOR color : Sets color to a number from the following list:

SET_LINE_TYPE type : Sets line type to a number from the following list:

SET_COLOR color

SET_LINE_TYPE type

SET_LINE_WIDTH width

SET_FILL_PATTERN pattern

SOUND_BELL loudness

SOUND_KEY_CLICK loudness

SET_ARC_TYPE type

SET_TEXT_FONT font type

SET_TEXT_SLOPE angle

SET_LINE_DISPLACEMENT xd yd

SET_LINE_ANGLE angle x y

SET_LINE_SCALE xsc ysc xs ys

0=white 4=cyan 8=orange 12=lt blue

1=black 5=magenta 9=pink 13=purple

2=red 6=yellow 10=yellow-green 14=brown

3=green 7=blue 11=blue-green 15=gray

1 = solid line 5 = dash-dot 8 = dashed

2 = dotted line 6 = wide-spaced dash 9 = dashed

3 = dashed line 7 = close dots 10 = dotted

4 = close dash

SET_LINE_WIDTH width Specifies line width in pixels; the width of a
normal line is 1 pixel.
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SET_FILL_PATTERN pattern Specifies the pixel density of a filled area. If 0
is supplied, there is no fill. If 2 is supplied the
fill will be solid. Density is also indicated with
numbers between 48 and 62, which indicate
the number of pixels (ranging from 1 to 15) in
a 4 × 4 array. For example, if you specify
SET_FILL_PATTERN 55 , expect a density of
8 pixels.

SOUND_BELL loudness Sets bell volume to an integer between 0 and
8, where 0 is silent and 8 is the loudest.

SOUND_KEY_CLICK loudness Sets key click volume to a number between 0
and 8 where 0 is silent and 8 is the loudest

SET_ARC_TYPE type Specifies fill type as 0, 1, or 2. 0 indicates
empty, 1 indicates a filled arc, and 2 indi-
cates pie fill.

SET_TEXT_FONT font type Sets the font type with an integer between 1
and 14. To see what these fonts look like,
bring up the IA palette GR/GRaphic shapes.
The appearance of these fonts may vary
among platforms.

SET_TEXT_SLOPE angle Sets the text slope with a number indicating
the angle of the text in degrees counterclock-
wise from horizontal. The angle is a number
representing the degrees of rotation.

SET_LINE_DISPLACEMENT xd yd Moves a line drawn by GENERAL_LINE. This
keyword displaces all points in the x and y di-
rections by the number of IA graphical Units
in xd  and yd  (default=0).

SET_LINE_ANGLE angle x y Specifies the angle of a line drawn with
GENERAL_LINE. The parameters x and y give
the x,y coordinates of the center point of the
rotation (which need not be the center of the
line). The angle  is a number representing
the degrees of rotation.

SET_LINE_SCALE xsc ysc xs ys Expands or shrinks a GENERAL_LINE and, if
desired, changes its distance from the scale
point at the same time. xs  and ys  are reals
such that 1 is full size, .5 is half size, etc. xsc
and ysc  indicate the location of the scale
center point; the default is 0 (centered).
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16.3.6 Animation Statements

The following statements can be used in the ANIMATION GRAPHICS and
POINTER_ACTION sections.

ABSOLUTE_ICON_POSITION xptr yptr

Places the bottom left corner of an icon at the screen coordinates specified in
IA graphical units.

MOVE_ICON xdptr ydptr

Moves/displaces an icon from its current location in the x and y direction by
the specified number of pixels. If both ABSOLUTE_ICON_POSITION and
MOVE_ICONare specified, the moves take place in the order in which the state-
ments are executed.

MOVE_AREA x1 y1 x2 y2 xd yd

Defines a rectangular area whose lower left corner is found at x1 , y1  and
whose upper right corner is specified as x2 , y2 then moves the area so that its
lower left corner is at the point specified by xd , yd.

COMPLIMENT_AREA x1 y1 x2 y2 mode

Defines a rectangular area whose lower left corner is at x1 , y1 , and whose up-
per right corner is x2 , y2 . If mode is 0 the area will be made a complementary
color; if it is 1, the area will flash in the current color.

ERASE_AREA x1 y1 x2 y2

Erases a rectangular area whose lower left corner is at x1 , y1 , and whose up-
per right corner is at x2 ,y2 .

REQUEST_POSITION mode xpos ypos tclick/status button

This keyword allows you to get the position of the pointer and find out what the
mouse is doing.

mode is 0 (previous) when this keyword is used for pointer action, and 1 (cur-
rent) when used for animation graphics. xpos  and ypos  store the location of
the pointer.

If mode is 0, tclick stores a value for mouse button action. tclick is 0 if the
button is depressed, 1 if single-clicked and 2 if double-clicked.

If mode is 1, button status  is 0 (OK) or 1 (out of window).

If mode is 0, button  is a variable identifying the button used. 1 is the left but-
ton, 2 the middle button, and 3 the right button. If no button is pressed the
variable is 0.
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16.3.7 Pointer Action Statements

The HOT_SPOTSstatement is used to define a rectangular area in an icon that has
an associated line or block of code that is to be executed when the hot spot area is
clicked with the mouse.

where:

HOT_SPOTS ptr nptsH1-x1 H1-y1 H1-x2 H1-y2
                  H2-x1 H2-y1 H2-x2 H2-y2
                  Hn-x1 Hn-y1 Hn-x2 Hn-y2

ptr is a value (calculated elsewhere) that tells which hot spot is being pointed at.
npts is an integer specifying how many hot spots there are on the icon. Each icon
hot spot is a rectangular area specified by bottom left corner (H1-x1,H1-y1 ) and
top right corner (H1-x2,H1-y2 ).

HOT_SPOTS ptr npts H1-x1 H1-y1 H1-x2 H1-y2

H2-x1 H2-y1 H2-x2 H2-y2

Hn-x1 Hn-y1 Hn-x2 Hn-y2

INQUIRE ptr prompt

LOAD string

CHAIN_DOWN string

CHAIN_UP

INQUIRE ptr prompt Creates a dialog box containing a prompt  string you
specify; ptr  accesses what the user types into the dialog.

LOAD string Loads a '.pic'  file without bothering to keep track of
previous .pic  files

CHAIN_DOWN string Loads a '.pic' file, keeping track of its position in a hier-
archical stack.

CHAIN_UP Reloads the last .pic  file.
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16.3.8 Palette Definition

The palette definition for all icons in a given file is placed at the end of the file. For
examples, look at the end of any of the IA .src  files in $SYSBLD/src .

BEGIN_PALETTE_DEFINITION

WINDOW_SIZE: width height
PALETTE_OBJECT: type xpos ypos page vars_diff var_value_pairs

END_PALETTE_DEFINITION:where

16.4 animation.cfg

You can modify the supplied configuration file $SYSBLD/etc/animation.cfg
(shown in Example 16-17 on page 16-22) so that IA uses your custom icons. Do not
change anything in the starred (**) banner area; these definitions are defaults.
Rather, copy definitions from the default area and place them in the user definition
area below the line reading “STATE YOUR DEFINITIONS BELOW”, remove the aster-
isks, and make your changes to the copied material. User definitions, such as the

width width of window in pixels

height height of window in pixels

type icon type number (❶ on page 16-8)

xpos x position of icon on window

ypos y position of icon on window

page Page number of palette. This parameter must be sequential. Num-
bers can range from 1 to 20 (practical limit) in order to define
pages in the palette.

#vars_diff

var value pairs

These parameters allow you to have different forms of the same
icon on the palette without defining them all separately by allow-
ing you to create a new icon that is the same as an existing icon
except for changes in its default settings.

If a non-zero entry is specified for vars_diff , the compiler looks
for that number of value pairs to follow.

For example, the following palette object description,

PALETTE_OBJECT: 3 900 295 5 2  I[2] 4  R[1] 3

creates a new icon based on icon number 3 by changing two default variables. In-
teger variable 2 is given a value of 4 and real variable 1 a value of 3.
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typical ones shown below, supersede the defaults, so there is no need to remove or
change the defaults.

Definitions in the default area that contain “==>” are not activated, and may be used
as comments. For example, copy the line:

*  BUILD_LOAD_PICTURE ==> 'pict1.pic'

to the user definition area and remove “==>” and the asterisk, and add a colon as
shown below, with the spacing exactly as shown:

BUILD_LOAD_PICTURE: 'pict1.pic'

EXAMPLE 16-17: Typical Animation .cfg File

WS_DRAW CONFIGURATION FILE (ANIMATION.CFG) VERSION 6.0

********************************************************************
* The first line of the config file must be:                       *
*      WS_DRAW CONFIGURATION FILE (ANIMATION.CFG) VERSION X        *
* All meaningful lines must start with the key words and COLON,    *
*     followed by the name of the file in single quotes.           *
* By convention, files are lower case, keywords and others         *
*     are upper case. Blank and comment lines are allowed.         *
*                                                                  *
* THESE KEYWORDS MAY HAVE MORE THAN ONE FILE POSSIBLE:             *
*                                                                  *
*      ICON_DATA_FILE       ==> 'project1.sog'                     *
*      ICON_DATA_FILE       ==> 'project2.sog'                     *
*      ICON_DATA_FILE       ==> 'project3.sog'                     *
*                                                                  *
*      BUILD_LOAD_PICTURE   ==> 'pict1.pic'                        *
*      BUILD_LOAD_PICTURE   ==> 'pict2.pic'                        *
*      BUILD_LOAD_PICTURE   ==> 'pict3.pic'                        *
*                                                                  *
*      PROCESS_PICTURES     ==> 'proc1.pic'                        *
*      PROCESS_PICTURES     ==> 'proc2.pic'                        *
*      PROCESS_PICTURES     ==> 'proc3.pic'                        *
*                                                                  *
* THESE KEYWORDS INCLUDE THE FOLLOWING DEFAULTS:                   *
*                                                                  *
*      ICON_DATA_FILE:        'etc:isim.sog'                       *
*      ICON_DATA_FILE:        'etc:moni.sog'                       *
*      ICON_DATA_FILE:        'etc:coni.sog'                       *
*      ICON_DATA_FILE:        'etc:graf.sog'                       *
*      ICON_DATA_FILE:        'etc:spec.sog'                       *
*      ICON_DATA_FILE:        'etc:orig.sog'                       *
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*      ICON_DATA_FILE:        'etc:alarm.sog'                      *
*                                                                  *
*      ICON_SOURCE_FILE:      'myicon.src'
*                                                                  *
*      BUILD_CONTROL_PANEL:   'etc:control.sog'                    *
*                                                                  *
*      SAVE_FILE_FORMAT:      'ASCII' or 'BINARY' or 'MATRIX'      *
*                                                                  *
*      PICTURE_SCALE_FACTOR:  '1.0'   (+ relative, - absolute)     *
*                                                                  *
*                                                                  *
* THE FOLLOWING COMMANDS SHOULD ONLY BE USED FOR HARDWARE:
*                                                                  *
*      I/O_PROCESSING                    ==> 'I/O PROCESSING ON'   *
*                                                                  *
*      CODE_GENERATION_OUTPUT_FILE      ==> 'pict.ada'             *
*                                                                  *
*      ADA_LIBRARY                       ==> 'pict.alb'            *
*                                                                  *
*      FREQUENCY_SCALE_FACTOR           ==> '1.0'                  *
*                                                                  *
*      HARDWARE_CONNECTION_EDITOR_FILE  ==> 'pict.ioc'             *
*                                                                  *
********************************************************************
*                                                                  *
*                STATE YOUR DEFINITIONS BELOW                      *
*                                                                  *
********************************************************************
ICON_SOURCE_FILE:    'myicon.src'

ICON_DATA_FILE:     'myicon.sog'

BUILD_LOAD_PICTURE:     'pict.pic'

SYSTEM_BUILD_RTF_FILE: 'pict.rtf'

SIMULATION_DATA_FILE:  'pict.sim'

SAVE_FILE_FORMAT:      'ASCII'

ALARM_PROCESSING:      'ALARM PROCESSING OFF'

ALARM_WINDOW_PICTURE:  'alarm.pic'

Note that the ICON_SOURCE_FILEand the ICON_DATA_FILE lines are the only
change from the Version 4.1 distribution version of the file.
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16.4.1 Important animation.cfg Keywords for Customized Icons

This section describes the animation.cfg  keywords you might need to alter.

16.4.2 icon.src Field for Customized Icons and New Palettes

ICON_DATA_FILE:
'myicons.sog'

You supply the compiled and translated source file that
defines which icons are available in IA.

PROCESS_PICTURES: List all the '*.pic'  files you want to access while run-
ning IA. at run time. Use the Process icon to access
'*.pic'  files listed here.

ICON_SOURCE_FILE:
'myicons.src'

Supply the name of the source file which contains your
icon definitions. When you have finished creating and
debugging your icons, create a new .src  and .sog  file
so that you can use your new icons.

BUILD_LOAD_PICTURE: Allows you to give the default (first) file you want sup-
plied (displayed) when 'SAVE PICT'  or 'LOAD PICT'
is chosen from the IA Builder control panel. Making
your file the default will save time if this is the primary
icon you use.

SYSTEM_BUILD_RTF_FILE:

Give the default file you want supplied when you choose
'RTF NAMES' from the animation control panel. The
'*.rtf'  file is the run-time file your SystemBuild file
generates. It must be loaded into IA before connections
can be made. Entering the name of your '*.rtf'  here
can save time.

IDENTIFICATION: 'u
p to 30 Characters '

Each time you start a new palette, change this field to a
new identifier, but keep it under 31 characters. If you don’t
change the name you may encounter errors which are the
result of conflicting ICON_TYPE numbers (see ❶ in
Section 16.3.1 on page 16-10).
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16.5 Procedure for Building Your Own IA Custom Icons

Figure 16-4 illustrates the steps for building custom IA icons. This process is sum-
marized below; see the Interactive Animation User’s Guide for a detailed explanation.

1. Use a text editor to edit a copy of one of the icon .src files that come with IA.
Change the IDENTIFICATION: field to something unique and save the file with
a different name; e.g., infile.src . the Identification is the name of the new
palette whose icons’ source statements are contained in infile.src .

2. Using your version of the .src file as a template you may now modify existing
icons or build a new one. The syntax rules of the source code language are de-
fined earlier in this chapter.

3. You can create and debug the compilation of a single icon in a separate file be-
fore adding it to the palette .src file. After it is added, specify its position on a
palette page using the PALETTE DEFINITION keyword at the end of the .src
file.

4. After you have your icon in source code, run the IA compiler by typing:

ia -c infile.src outfile.sog a/b

FIGURE 16-4 Building Custom IA Icons
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For more on the IA compiler, see the Interactive Animation User’s Guide.

5. Copy the file $SYSBLD/etc/animation.cfg to your local directory. Note that
if you are testing icons within SystemBuild ISIM, you must start Xmath from
the directory containing this local copy of animation.cfg .

6. Add the line ICON_DATA_FILE: 'outfile.sog' to the user definition portion
(towards the end) of animation.cfg . When you bring up IA you will see the
new icon in the palette you created.
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17 Components

This chapter describes the SystemBuild components feature. A component encap-
sulates a SystemBuild SuperBlock hierarchy. Within a model, a component inter-
acts with other blocks much like a conventional SuperBlock does, with the notable
difference that component information is stored in a separate catalog. By default,
objects or %Variables within a component do not affect objects in the Main Super-
Block hierarchy; however, components can be parameterized using %Variables and
variable blocks. These can be exported through the component interface so they are
accessible to component users.

Components provide a mechanism for archiving, distributing, and licensing System-
Build SuperBlock hierarchies. They can be used within a development team to cre-
ate libraries of commonly-used SystemBuild SuperBlock hierarchies, thereby
promoting greater re-use. A component can be encrypted to prevent users from
viewing or altering its internal details. It can also be licensed, so that use is re-
stricted to those with a valid license key.

This chapter explains how to both create and use components. A distinction is made
between the component user and the component creator.

17.1 Introduction

Components are encapsulated SuperBlock hierarchies. Like pre-defined ISI blocks,
they can be referenced in a model, connected to other blocks, and parameterized us-
ing %Variables and Variable blocks that are exported through the component’s in-
terface. Components with the same number of inputs and outputs and the same
parameterization interface can be used interchangeably in your model.

Components have a local namespace. Namespace is the scope within which a name
can refer to only one entity. By default, a SuperBlock hierarchy (for example, the
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Main catalog) can contain only uniquely named items. If an object is introduced into
the hierarchy and there is a namespace conflict, then the new item will overwrite the
old.

Because a component is an encapsulated hierarchy, the names of all entities within
its hierarchy have local scope, therefore, a component can be introduced into a
model without contaminating its namespace. For example, a SuperBlock called “foo”
in the model will have no effect on a SuperBlock called “foo” within a component in
that same model, and vice versa.

You can make a component from an existing SuperBlock hierarchy, as long as it
does not contain elements that use resources that can’t be saved with the compo-
nent catalog. Section 17.3.1 on page 17-9 discusses these restrictions.

17.1.1 Component Scope

Encapsulation is another important component trait. We’ve already mentioned that
variables within a component are in a separate namespace, which prevents conflicts
with SystemBuild catalog items. To extend that thinking, the catalog in which the
component exists must not have another item of the same name, or a conflict will
occur.

Sometimes, however, it’s useful to have access to parameters within the component
scope. For example, you might want to alter %Variables or Variable block values.

A parameter can be visible outside the component’s local scope if it is explicitly ex-
ported by the component’s creator. Exported %Variables and variable blocks form
the parameters for the component. Any %Variables and variable blocks that are not
explicitly exported are not visible outside the component’s local scope and are re-
ferred to as contained variables. The details of exporting variables are discussed in
Section 17.3.7 on page 17-12.

17.1.2 Component Interface

A component’s interface provides the connectivity between the component’s encap-
sulated SystemBuild SuperBlock hierarchy and the model that references it. A com-
ponent’s interface consists of two parts:

■ Inputs and Outputs

■ Parameters (exported %Variables and variable blocks)

Component inputs and outputs have a similar behavior to a “built-in” block’s inputs
and outputs. They are a means of providing data to and obtaining data from the Su-
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perBlock hierarchy contained in the component. The component is parameterized
using exported %Variables and/or variable blocks that take up namespace in the
item (in most cases the user’s model) that contains the component’s reference. The
user “tunes” the component by assigning values to these parameters.

17.1.3 Component Parameter Sets

A component parameter set, or PSET, is a set or subset of values for the component
parameters. Component parameter sets are stored in files and can be loaded into an
active Xmath session. Parameter sets make it convenient to set the parameters of a
component to a known configuration. The details for using parameter sets can be
found in Section 17.2.3 on page 17-7 and in Section 17.2.4 on page 17-7.

17.1.4 Component References

Component references are classified based on the location of their definition with re-
spect to the current model. The definition of a component is the catalog that con-
tains the SystemBuild SuperBlock hierarchy that the component encapsulates.
Component references can be classified as:

■ Regular Component References

■ File Component References

Regular component references are those references whose component definition is
contained within the current model. File component references are those compo-
nent references whose component definition is contained in another model file. This
is analogous to SuperBlock references and File SuperBlock references. File compo-
nent references are generally used to refer to a component that is part of a library.
The definition of the library component is located in a separate file that the user
may or may not have permission to write to. The user includes the model file con-
taining the file component definition in the SETSBDEFAULTS SBLIBS library path.

File component references and regular component references are used in a similar
manner, except that one cannot change scope into a file component’s catalog. The
details of changing scope into a component are discussed in Section 17.2.5 on
page 17-8.

17.1.5 Component Access

Components provide different levels of access to the user. These access restrictions
combined with encapsulation make components a useful mechanism for archiving,
distributing, and licensing SystemBuild hierarchies. A component’s access level de-
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termines how the user interacts with it in a model. The following sections describes
the different types of components and level of user access provided.

NOTE: All components, regardless of access level, encapsulate the SystemBuild
SuperBlock hierarchy they represent.

Open Components

Open components provide complete access to the user. The user is able to view the
internal details of the open component by changing scope to its catalog. Simulation,
code generation and documentation generation are possible for models that refer-
ence open components. Open components are generally used within a development
team to create libraries of commonly-used SystemBuild hierarchies.

Encrypted Components

Encrypted components provide a convenient way of sharing SystemBuild model in-
formation outside the development team, while protecting sensitive information and
intellectual property.

A component user cannot view the internal details of encrypted components. By de-
sign, encrypted component references are file component references, thus the user
cannot change scope into an encrypted component’s catalog. The user can simulate
and generate documentation for models that reference encrypted components, but
the model output will not expose the internal details of the encrypted component.

■ Code cannot be generated for models that contain references to encrypted com-
ponents.

■ Encrypted component files cannot be loaded into the SystemBuild editor.

Licensed Components

Encrypted components can be licensed in the public domain as packaged libraries,
so that only users with valid license keys are allowed to analyze and simulate mod-
els that reference these licensed components. Licensed components behave just like
encrypted components except that they require a valid license key to be simulated
as part of a SystemBuild model.
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17.2 Using Components in SystemBuild Models

This section describes the use of components in a model. Component creation is
covered in Section 17.3 on page 17-9.

References to components are similar to references to “built-in” ISI blocks (for exam-
ple, a gain block). They can used in the same manner as ISI blocks.

17.2.1 Viewing Components

This section briefly describes how to view components in SystemBuild’s Catalog
Browser and editor windows. See the Catalog Browser online help for more details.

TABLE 17-1 Summary of Component Types

Feature Open Encrypted Licensed

Provides Encapsulation Yes Yes Yes

Can be referenced as a regular component reference Yes No No

Can be referenced as a file component reference Yes Yes Yes

Component’s details accessible Yes No No

Can change scope into component Yes No No

Can simulate models containing component Yes Yes Yes

Can be simulated without a valid license key Yes Yes No

Can block-step into component during interactive
simulation

Yes No No

Can generate code for models containing component Yes No No

Can generate documentation for models referencing
components

Yes Yes Yes

Component details shown in generated documenta-
tion

Yes No No
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Figure 17-1 shows a component reference in the SystemBuild editor window. The
representation of component references is similar to that of SuperBlock references.

Component references are displayed in the SystemBuild Catalog Browser’s Contents
view, just as with other block references. If a model contains regular components,
then the component’s definition is listed in the Catalog view Component folder.

17.2.2 Creating References to Components

References to components can be created in many ways depending on whether the
component definition exists in the current model, a reference to the component al-
ready exists in the current model, or a custom block for the component exists on a
custom palette.

NOTE: References can be created using the standard drag and drop mechanism.

The following methods may be used to create component references in the editor:

1. To reference a component whose definition exists in the current model, go to the
Catalog view and open the Components folder. Drag and drop a component from
the Components folder into the editor.

2. To create a new SuperBlock reference to a component item, go to the Catalog
Browser Catalog view and click on a SuperBlock that references a component.
The Contents view will list the blocks. Drag the reference from the Contents
view to the editor.

3. To create a file reference to a component defined in a library catalog, go to the
Catalog view, click on the Library heading and choose a library catalog. A list of
components available in the library catalog is displayed. Drag and drop a com-
ponent from the Catalog browser list view into the editor.

FIGURE 17-1 Default Component Icon
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4. To create reference to a component that exists as an item on a custom palette,
drag it from the palette and drop it into the editor, just as with a pre-defined ISI
block. See Chapter 18.

5. All SuperBlock references become component references to the top SuperBlock
in the Component. Making a component out of a SuperBlock hierarchy from the
parent SuperBlock creates a reference to the newly created component. The new
component reference will appear in any SuperBlock that contained the compo-
nent’s top-level SuperBlock (the top SuperBlock in the component’s hierarchy
before the hierarchy was converted into a component).

17.2.3 Controlling Component Parameters

To view the parameters of a component, bring up the Component block dialog for a
component reference. Any exported %Variables are listed on the Parameters tab.

To change the value of a component’s parameter, an Xmath partition must be spec-
ified for the component reference in the Component block Partition field. Once this
Xmath partition has been specified, the parameters of the component reference will
obtain their values from it. If an Xmath variable with the same name as the compo-
nent’s parameter is not present in the Xmath partition, the parameter’s default
value is used. The column In Partition specifies whether the corresponding parameter
is present in the specified Xmath partition. To change the values of a variable in the
component reference’s Xmath partition, change it in Xmath, or, alter the value in
the Component block dialog.

17.2.4 Loading Component Parameter Sets

Parameter sets can be used to load in a particular set of values for a component ref-
erence’s parameters. Before you can do this, you must specify an Xmath partition
and store the parameter sets for the component there. Once the Xmath partition for
a component reference is specified, the user can choose between Palette or User pa-
rameter sets in the Component block Parameters tab.

■ Palette parameter sets are those that are contained as part of the custom block
packaging in the custom block directory specified by the palette

■ User parameter sets are created by the end-user and loaded into the current
working session of SystemBuild using Psets_Load . See Section 17.4 on
page 17-14.

Available parameters sets are listed in the combo box in the Parameter Sets section. To
load the parameter set into the component reference’s Xmath partition, choose one
of the listed parameter sets and press the Load PSET button. Loading a parameter set
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creates the variables specified in the parameter set in the specified Xmath partition
[if they do not already exist] and assigns them the values specified in the parameter
set. The set of values specified in a parameter set may be a subset of the compo-
nent’s parameters.

NOTE: Loading a parameter set changes the values in an Xmath partition,
therefore all references that use the Xmath partition will be affected. If
this is undesirable, then the references should specify different Xmath
partitions. This mechanism provides a way of coupling related component
references by specifying the same Xmath partition to these references.

Section 17.4 on page 17-14 contains more details on PSETs.

17.2.5 Changing Scope into a Component Catalog

Typically, an end-user does not need to know the internal details of a component,
but if the need arises you can change scope into a component’s catalog to view its
contents. To do this, select a component in the component section of the Catalog
browser, then select View→Component Catalog, or, raise the Quick Access menu
and select Component Catalog. Note, not every component allows a user to scope
into its catalog (see Table 17-1 on page 17-5).

When you enter a component’s catalog scope, the text field just above the Catalog
view reflects the current catalog. The contents of the user’s model are replaced with
the component’s SystemBuild SuperBlock hierarchy.

The catalog browser treats a component catalog exactly the same as other catalogs.
If a component contains other components, you can change scope into the child
components’ catalogs in the same fashion. To navigate down, open a component
catalog; to navigate to the parent, click the directory icon. To return directly to the
main model, choose View→ Main Catalog.

NOTE: If any changes are made within a component catalog, the component
needs to be re-componentized. See Section 17.3.8 on page 17-13 for
details.

17.2.6 Simulating Models with Components

Models that contain components are simulated in the same way as other models. If
the model contains licensed components, however, the user must to possess a valid
license key for the licensed component in order to analyze and simulate the model.
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17.3 Creating Components

This section first describes component concepts so that you, as the component cre-
ator, can accurately design the SystemBuild SuperBlock hierarchy that will become
a component. The name of the component created will be that of the top-level Super-
Block in the SuperBlock hierarchy that is transformed into a component. The actual
creation of the component is done using the Component Wizard, which is discussed
in Section 17.3.7 on page 17-12.

17.3.1 Restrictions on Component SystemBuild Hierarchies

SystemBuild components encapsulate SuperBlock hierarchies. Therefore, any mod-
eling element that breaks this encapsulation is disallowed in a component hierar-
chy. These elements cannot be included in components:

■ Data Stores

■ References to File SuperBlocks or File Components

■ IA blocks

■ SuperBlock or Component references that specify a partition

■ UCBs or MathScript blocks that use global variables

If a hierarchy contains one of these elements, the componentization will fail.

Technically, the timing attributes of a discrete SuperBlock hierarchy (sampling rate
and time skew) also invalidate encapsulation, because they cannot be controlled
through the component’s interface but are still visible outside the component. How-
ever, SystemBuild allows you to componentize a discrete SuperBlock hierarchy, with
the restriction that its sampling rate and time skew are fixed at the time of compo-
nent creation. A better method, however, is to convert the top-level SuperBlock in
the discrete hierarchy to a Procedure SuperBlock, so that the component’s encapsu-
lation is not violated. A component that contains a Procedure SuperBlock as the
top-level SuperBlock will assume the timing characteristics of its parent.

17.3.2 Understanding Parameterization of Components

A component user can tune SystemBuild components by assigning values to the pa-
rameters exported through the component’s interface by the component creator.
These exported parameters can be %Variables or variable blocks. The creator needs
to identify the component parameters that are important for tuning, ensure that
they are either %Variables or variable blocks (else create %Variables or variable
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blocks and use them in the hierarchy), and export them at the time of component
creation.

All %Variables and variable blocks that are not exported at the time of component
creation assume local scope and are referred to as contained variables. Contained
variables are not visible to the user, so it is important that the component creator
carefully assign appropriate default values. The default values used for the con-
tained variables are the block defaults unless the component creator specifies other-
wise at the time of creation. These default values are used if the component user
does not define the exported variables in the component reference’s partition.

17.3.3 Understanding the Component Scope

The component creator must understand the concept of component scope in order
to manage the component scope hierarchy. A component’s scope is the collection of
the items in the component’s private catalog and the parameters (%Variables and
variable blocks) that are present in the component. These parameters include all of
the exported variables of child components that the component may contain. The
component’s scope is associated with two namespaces -- a catalog namespace and a
variable namespace. The names of the component’s catalog items (SuperBlocks,
State Transition Diagrams and child components) occupy the component’s catalog
namespace. This implies that all names must be unique within a component’s pri-
vate catalog. Within a component all variables should refer to the same entity; com-
ponent variables with the same name are assumed to have the same datatype and
dimensions. If this assumption is violated, the Component Wizard will report an er-
ror at the time of component creation (see section Section 17.3.7 on page 17-12).

When a component contains another component, the exported variables of the con-
tained component assume the scope of the parent component. The parent compo-
nent in turn may export some or all of the contained component’s exported
variables. If any of the contained component’s exported variables are not exported
by the parent component, they become the parent component’s contained variables
and will assume the value specified by the parent component, if any. Otherwise they
will default to the values assigned by the child component’s creator. This is impor-
tant to note because all the exported variables of the child component are no longer
accessible to the user.

If a component contains two child components “foo” and “bar” and each child ex-
ports a variable with the same name, then the two components are coupled. As
stated in Section 17.3.1 on page 17-9, component references within a component
cannot specify a partition. Therefore the references to “foo” and “bar” cannot specify
partitions. The assumption is that the two components are coupled because they
have exported the same parameters.
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17.3.4 Mapping Exported Variables

Mapping is a mechanism by which the component creator can parameterize a com-
ponent with parameters that do not exist inside the component’s SuperBlock hierar-
chy. The component creator creates variables called mapping parameters and
makes them visible to the component user through the component’s interface. The
component creator then uses these mapping variables to set the values of %Vari-
ables in the component’s SuperBlock hierarchy using mapping equations (valid
Xmath statements). To the component user, the mapping variables look the same as
any other exported variable. The component user can assign values to the mapping
parameters which in turn are used to assign values to the %Variables in the compo-
nent’s SystemBuild SuperBlock hierarchy through the mapping equations.

If a component uses mapping, then the only parameters visible to the component
user are the mapping variables and the exported variable blocks. The component
creator must decide which of the %Variables in the hierarchy to export. Mapping
can be performed only on %Variables identified as exported variables.

If a component uses mapping, every exported %Variable must be mapped. For ex-
ample, if a %Variable “foo” is designated as an exported variable in a component
that uses mapping, and no mapping variable is assigned to “foo”, an inconsistency
occurs because “foo” is not visible to the component user and therefore its value can
never be modified.

One of the advantages of using mapping, as opposed to modeling the mapping equa-
tion inside the component’s SuperBlock hierarchy, is that mapping allows constants
without complicating the model. Another major advantage is that the exported vari-
ables are not computed every time step during simulation but only at the start of
the simulation, or if the mapping variable is changed during RVE (Runtime Variable
Editing). Mapping is, therefore, more efficient during simulation and keeps the
model simple.

17.3.5 Customizing the Component Dialog

There may be situations where the component creator wants to have a custom dia-
log associated with the component’s references. For example, the creator may want
to use a graphical representation of the component’s parameters so that the compo-
nent user can modify the parameters by dragging points on a graph rather than en-
tering them in the fields provided by SystemBuild’s native dialog.

Components allow the creator to associate a custom dialog with the component’s
references. This custom dialog can either replace or augment the native System-
Build dialog for component references. If the component creator decides to override
the native dialog, the custom dialog is displayed when the component user brings
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up the dialog for component references. If the component creator decides to aug-
ment the native SystemBuild dialog, then the custom dialog is displayed when the
user brings up the dialog for component references, followed by the native dialog
when the user dismisses the custom dialog.

A custom dialog must be programmed by the component creator with an MSF. The
interface to the MSF is the same as that for the function sysbldEvent (see the on-
line help), although the interface is not used when you specify an MSF. The event
string will be CustomDialog .

17.3.6 Documenting the Component

The component creator should adequately document a component so that it is
self-describing to the component user. Proper and complete documentation is es-
sential to ensure component re-use, which is the primary motive for creating com-
ponents. The list of good documentation practices include:

■ Name the component so that it accurately reflects the abstraction that it repre-
sents. Avoid commonly-used names so that the user does not have naming con-
flicts when the component is included in a model.

■ Name the exported variables so that their meaning is clear to the component
user.

■ Create a document that describes the component’s inputs/outputs, interface,
and functionality. To assist the user, distribute the document as part of the
component. See Section 17.6 on page 17-16.

■ Label the component’s inputs and outputs.

17.3.7 Creating Components Using the Component Wizard

To transform a SystemBuild SuperBlock hierarchy into a component, choose the
top-level SuperBlock in the Catalog Browser, then select Tools→Make Component.
(Note, you will not be able to create a component if any object in the future compo-
nent catalog is open in an editor.) The Component Wizard is invoked. Enter the re-
quested information in each of the fields in the Wizard’s pages to create the
component.
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Before invoking the wizard make sure that you are prepared to answer the following
questions:

■ Does the top-level SuperBlock of the hierarchy have the name that you want the
component to assume?

■ Does this component require a custom dialog? If yes, then what is the name of
the MSF that invokes the custom dialog?

■ Will this component use mapping? If yes, gather the mapping parameters for
this component in a single Xmath partition. The Component Wizard will use the
designated partition to obtain the parameter dimensions. The parameter values
will become the default values for the component’s mapping parameters. The
new component will no longer need the original Xmath partition or its contents.

■ Which of the %Variables and variable blocks in the SystemBuild SuperBlock hi-
erarchy will be exported through the component’s interface?

■ Do you want to specify default values for the %Variables other than the block
defaults? If yes, gather the variables into a single Xmath partition. The Compo-
nent Wizard will use the values of the variables found in the specified partition.
Once created, the component will no longer need or refer to the partition that
contains the defaults for the exported variables.

■ Does the component use mapping? If so, make sure that you prepare the equa-
tions you will use to map the mapping variables to the component’s exported
variables. Mapping can also be performed by invoking a user-defined Xmath
command or function; write and test your MathScript, and have the calling syn-
tax ready before you componentize.

17.3.8 Modifying Components

Once a component has been created it can be modified (assuming it is not en-
crypted).

To modify a component’s interface go to the Catalog browser, select the component,
then select Tools→Edit Component. Again, you cannot modify a component if any
member object is currently displayed in the editor. The Component Wizard is in-
voked and the component is re-componentized with the new interface that the user
specifies.

To modify the internal details of a component, change scope to the component’s cat-
alog as discussed in Section 17.2.5 on page 17-8 and make the necessary changes.
When the scope is changed back to the component’s parent catalog, the Component
Wizard is invoked. This because the component’s interface may need to be altered to
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reflect the changes made to its internal details. Failure to re-componentize may re-
sult in inconsistencies if the changes to the component’s hierarchy affected the
component’s interface. The steps in re-componentizing a component are similar to
creating a component, as described in Section 17.3 on page 17-9.

17.3.9 Unmaking a Component

To reduce a non-encrypted component to a SuperBlock hierarchy in its parent cata-
log, select the component, then select Tools→Unmake Component. This will replace
the component in the parent catalog with the SuperBlocks within the component. If
there are any name conflicts, the user will be asked to choose whether to keep the
existing SuperBlock in the parent catalog or overwrite it with the one from the com-
ponent.

17.4 Creating and Using Parameter Sets

A parameter set is a set of values for the parameters, or a subset of the parameters,
of a component. Component parameter sets (PSETs) can be stored in files and
loaded into an active SystemBuild session. Parameter sets make it convenient to set
the a component’s parameters to a known configuration.

This section describes the creation and loading of parameter sets for components.

A parameter set is stored in an Xmath file. To create a parameter set file, use the
Psets function to create a MathScript object that represents the parameter set.
Note, this is not the same as using the Xmath SAVE command.

EXAMPLE 17-1: Creating and Saving PSETs

The following example creates, saves, and loads a parameter set called “Monster-
Shocks” for a ‘shock_absorber’ component that has exported the parameters ‘spring
rate’ and ‘setting’.

1. The first step is to define the PSET using the Psets function. The Psets func-
tion takes as arguments the component name, the PSET name, and the name
and values of variables that will make up the PSET.

pset1 = Psets("shock_absorber","MonsterShocks",
{setting = 2,spring_rate =3})
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The Psets function formats the inputs, producing a MathScript object that is
assigned to the output variable pset1 . Note, the name ‘MonsterShocks’ will only
be visible from the component reference dialog.

2. The variable pset1 now contains the PSET ‘MonsterShocks’. The newly created
MathScript object needs to be registered as a parameter set by calling the
Psets_AddToList  command.

Psets_AddToList pset1

3. The component interface expects a PSET to be the only object in a single file. To
isolate the object in a file, call the Psets_Save  command.

Psets_Save pset1, "steve.pset"

Once the parameter set has been created and saved into a file they can be distrib-
uted along with a component as a custom block on a custom palette; see
Section 18.2.1 on page 18-6.

EXAMPLE 17-2: Loading PSETS

To load a pset as a user parameter set for a component, issue the Psets_Load com-
mand from Xmath.

Psets_Load "steve.pset"

Once the parameter set has been loaded it is visible in the Component block dialog
Parameters tab combo box if the user radio button is selected. A partition for a com-
ponent reference must be specified before in order to activate the Parameter Set sec-
tion in the Component block dialog.

The parameter sets that are distributed with the component (as a custom block on a
custom palette) are automatically loaded when a partition is specified for a compo-
nent reference. The palette parameter sets can be viewed in Component Block Dia-
log Parameter Set area if the Palette  option is selected.
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17.5 Using SBA with Components

The following is a list of SBA commands that support components.

■ deletecomponent

■ makecomponent

■ querycomponent

■ querycomponentoptions

For a complete description of the commands see the online help.

17.6 Distributing SystemBuild Components

A component can be distributed either as a model file or as a custom block on a cus-
tom palette.

■ If it is distributed as a model file then the user can load the component like any
other model file, or add the model file to the File SuperBlock Library by modify-
ing the SBDEFAULTS SBLIBS keyword.

■ A component can also be made into a custom block and put on a custom pal-
ette.

The latter method is more versatile because the component creator can include all
the auxiliary files such as a custom dialog file, documentation file, etc. For a de-
tailed description of distributing a component as a custom block, refer to
Section 18.2 on page 18-6.

Encrypting and Licensing Components

Components can be encrypted using the ENCRYPTutility described in the online
help.

The ENCRYPTutility can only be used on a SystemBuild file that contains a single
top-level component. To isolate a component, load the model that contains the defi-
nition of the component that needs to be encrypted. In the Catalog Browser, select
the Component, then select File→SaveAs. In the Save dialog SuperBlocks field,
choose Selected , then press OK. The saved component will be the top-level component
in the new file.
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In addition to a simple encryption, which merely keeps component users from alter-
ing the component, you can optionally specify a license feature name. Users must
then have a valid license key to use it.

17.7 Examples

The examples in this section show common component creation tasks.

17.7.1 Encapsulating a SuperBlock Hierarchy

In this example, a simple SuperBlock hierarchy named ‘proto’ is converted to a com-
ponent. A SuperBlock, 'test’, exists in the main catalog and is referenced within the
SuperBlock proto. This procedure demonstrates that encapsulating the proto Su-
perBlock as a component creates a second definition of test inside the component;
changes made to the SuperBlock test in the component catalog will not affect the
definition of test in the main catalog.

1. Load the model encap.dat :

copyfile "$SYSBLD/examples/components/encap.dat"
load "encap.dat"

2. In the Catalog Browser, highlight the SuperBlock ‘proto’. Select Tools→Make
Component.

3. The component wizard appears. To accept the default settings, press Finish .

In the Main Catalog view, observe that the SuperBlock ‘proto’ has moved from
the SuperBlocks folder to the Components folder.

4. In the Catalog view, click the components folder to display the components in
the Contents view. Click the proto component to display a flat list of its mem-
bers in the Contents view.

5. Open the component ‘proto’. Navigate into the SuperBlock ‘test’. Change the
gain block value to 99. Press OK.

6. Click the Parent icon to return to the SuperBlock then click the parent icon
again to change scope back to the Main catalog. Since the component has been
changed, the Component Creation Wizard will appear as you leave the compo-
nent’s scope. Click Finish  to re-package the component.

7. In the SuperBlock ‘ex1’, navigate into the ‘test’ SuperBlock and inspect the gain
value. The value is still the original default value of 1.0. Changing the Super-
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Block inside the component had no effect on a SuperBlock with the same name
outside the component scope.

17.7.2 Exporting Component Parameters

This example uses a simple model that contains %Variables and variable blocks to
demonstrate exporting parameters in components.

1. In Xmath, create a partition named ex2, then make it the current partition.

new partition ex2
set partition ex2

2. Load the example data:

load "$SYSBLD/examples/components/param.dat"

3. In the Catalog view, expand ex2, locate the SuperBlock ‘top’ and make a compo-
nent out of it. In the first window of the Component Wizard, click Next to accept
all default settings.

4. The Exporting Definition screen appears. Export the %Vars ‘temperature’ and
‘humidity’, and the Var Block ‘varblock2’. At the bottom of the form, click Re-
place . Type ex2  in the partition name field. Click Finish .
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5. Open the SuperBlock ‘ex2’, then open the block dialog for the component refer-
ence ‘top’. Note the exported %Variables are visible (see Figure 17-2). Click on
the parameter name to view the value in the spreadsheet below.

17.7.3 Using the Parameter Set Interface

This example will use parameter sets (PSETs) with the component ‘top’ created in
Section 17.7.2.’

1. In the Xmath command area, make sure you are in partition ex2 then define
PSETs for the component ‘top’:

p1=psets("top","p1",{temperature=9,humidity=5,varblock1=-2});
p2=psets("top","p2",{temperature=3,humidity=4,varblock1=-6});
p3=psets("top","p3",{temperature=6,humidity=2,varblock1=-9});
p4=psets("top","p4",{temperature=7,humidity=1,varblock1=-1});

FIGURE 17-2 Exported Variables in a Component Reference Dialog
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2. Now register the new PSETs:

psets_addtolist p1;
psets_addtolist p2;
psets_addtolist p3;
psets_addtolist p4;

3. From the SuperBlock ‘ex2’, open the ‘top’ component reference dialog. In the
Xmath Partition field, define a new partition ‘test’ to receive copies of the pset vari-
ables. This activates the Parameter Set options on the Parameters tab. (Note,
the fields will not activate until you tab out of the Xmath Partition  field.)

4. In the Parameter Set area, select User. The combo box will display the psets de-
fined above. Select a pset, then press Load PSET .

5. PSET values are now available in the block dialog. Select a parameter (either
humidity or temperature. In the display area below, select Defaults to view the
original %Var, or select Xmath  to view the value from the PSET you loaded.

6. Click OK. The PSET is unpacked to the partition specified in the form. Any sim-
ulation or code generation will use the parameters in the new partition for the
exported variables.
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17.7.4 Interface Mapping

This example demonstrates how a component creator can use mapping to modify
component outputs without changing the model itself.

Assume the temperature in the sample model is in units of degrees Fahrenheit, but
a component user needs an interface that has temperature in units of Celsius. Map-
ping can be used to accommodate the user.

1. Load the example data:

load "$SYSBLD/examples/components/param.dat"

2. Create a new mapping partition ex_map. Inside this partition, create a variable
c  and give it a value of 8:

new partition ex_map
ex_map.c = 8;

3. Make a component out of the SuperBlock top. In the first dialog of the compo-
nent wizard, select Use Mapping . In the field Xmath Partition to Get Mapping Variables
From , enter ex_map as the partition to get mapping variables from. Press Next.
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4. In the next dialog, export the parameter temperature  only. Click Next.

5. The parameter mapping form appears next. In the Parameter field, enter the previ-
ously specified mapping variable c . Click Add .

Enter the following equation in the Mapping Expression  field:

temperature = (9/5) * c + 32;
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6. Click Finish . Open the block dialog form for the component reference, and note
the Parameters tab displays only the %Variable c , with an initial value of 8.

17.7.5 Using a Custom Dialog

In this simple example, the Xmath Dialog commands GetChoice and GetLine are
used to set up a special dialog where the user can change the Instance Name of the
component reference. Once the new instance name is entered, a GetChoice dialog
prompts the user for the regular SystemBuild component reference dialog.

1. Copy the sample MathScript function to your local directory.

copyfile "$SYSBLD/examples/components/dialog.msf"

2. Load a simple demonstration model:

load "$SYSBLD/examples/components/encap.dat"

3. In the SuperBlock ex1, make a component out of the SuperBlock ‘proto’. In the
component creation wizard go to the Dialog section and enable Xmath Callback . In
the Xmath Command field, type dialog .

4. Click Finish . In the Catalog browser, open ex1 for editing.
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5. Open the component ‘proto’ block reference. A single text entry box will appear
from the Xmath Command window. Enter a SuperBlock name and click OK.

The next dialog gives you the option of opening the standard SystemBuild dialog
for the component reference, or bypassing it.
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18 Palettes and Custom Blocks

The palette browser organizes blocks in logical groupings represented as tree nodes
(shown on the left side of the palette browser). Blocks in the current grouping are
shown on the right.

This chapter describes how to customize the palette browser tree structure (with
custom palettes) and contents (with custom blocks). The tree structure can have
multiple levels, each defined by a separate palette file. Palette files can contain per-
sonalized organizations of predefined ISI blocks, customized versions of ISI blocks,
and other palettes. A custom block is a block that has been saved so that it includes
specified parameter values, labels, or names. Functional blocks, STDs, Super-
Blocks, Components and DataStores can become custom blocks.

Section 18.1 shows how to create and load a palette that uses predefined ISI blocks.
Section 18.2 shows how to create a custom block, including how to add special star-
tup, help, and bitmap files. Examples will show how to incorporate custom blocks
into custom palettes then load them into the palette browser. The last section dis-
cusses new SBA support for custom blocks and palettes.

18.1 Custom Palettes

By default, the palette browser displays all ISI defined blocks in the palette Main.
The Main palette contains a set of palettes that each contain a collection of blocks
with similar properties (algebraic, dynamic, etc.) You can create your own custom-
ized palette file that contains blocks or palettes organized as you see fit, Customized
palettes can be added to or deleted from the existing tree structure. Each tree node
in the palette browser is defined by a separate custom palette file. To create multiple
levels in the tree hierarchy, define a new palette file for each level.
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18.1.1 Creating Palette Files

A palette file is composed of lines of palette items. Each palette item points to an ISI
built-in block, a custom block, or another palette file. The following example shows
how to create a simple custom palette file.

EXAMPLE 18-1: Trivial Custom Palette Example

This example shows how to create a new palette that shows only the Dynamic
Blocks palette and the Gain block.

1. In the current working directory, create a text file named example.pal that
contains the following two lines:

palettefile="ISI_dyn.pal" title = "My Dynamic"
blockdirectory="ISI_Gain" title = "My Gain"

Save the file.

2. Open the palette browser. Choose File→ Open. Select example.pal . Click OK.

The new palette appears under the heading example ; click on example , and the ISI
Gain block appears to the right. Double-click on the label example to see the Dyn-
amic palette.

3. To close the palette, highlight example , then select File→Close.

The example’s tree structure is very simple. A base node, example , has one node, My
Dynamic , attached to it.

EXAMPLE 18-2: Trivial Custom Palette Example with Nesting

This example shows how to create multiple levels in the palette browser hierarchy.

1. In the current working directory create a text file named levelone.pal that
contains the following line:

palettefile="leveltwo.pal"

2. Create a text file named leveltwo.pal  that includes the following line:

palettefile="example.pal"

(This file, example.pal , was created in Example 18-1).
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3. Open the palette browser. Choose File→Open. Select levelone.pal . Click OK.

The new palette appears under the heading levelone . Double-click on levelone . A
node with label ‘leveltwo ’ will appear. Double-click on leveltwo . The label example
appears as a child of leveltwo . Single-click on the example , and the ISI Gain block
appears to the right. Double-click on example (or click on the + next to the label
example) to see the Dynamic palette.

Palette files can be called recursively; for example, leveltwo can contain an entry
for levelone . When recursion is detected, the palette browser displays a single
level of recursion (infinite levels of recursion will not be represented).

4. To close the palette example, highlight levelone , then select File→Close.

NOTE: Close can only remove entire palettes; there is no way to close off
leveltwo , but keep levelone .

EXAMPLE 18-3: Closing and Reloading the Default ISI Palette

You can completely remove the default ISI palette at any time.

1. Highlight the label Main, then select File→Close, or click the  icon.

2. To reload the default palette, select File→Load SystemBuild Palette.

18.1.2 Palette File Syntax

The examples above show the basic syntax of all palette files. Palette files can con-
tain statements that define blocks (blockdirectory ) and lines that refer to other
‘nested’ palette files (palettefile ).

The exact statement syntax for palette entries are:

blockdirectory = "BlockDirectory" title="block-title-on-palette"
help = "path-to-html" icon="path-to-bitmap"

palettefile = "path-to-palette" title="palette-title"

■ Each statement must be on a single new line (above we show a continued line,
but in the file is must be a single line per item). No commas or line terminators
(for example, a semicolon) are required.

■ Valid keywords are title , help , and icon . These keywords are explained on
page 18-12.
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■ Block and palette statements may be interspersed in the file.

■ Comments are not supported in custom palette files.

Here are some examples of valid custom palette file statements:

PaletteFile = "/homes/test/mypal.pal"
BlockDirectory = "ISI_LinearInterp"
BlockDirectory = "F:\blocks\custgain"
PaletteFile = "../mypal.pal" title = "test"
PaletteFile = "ISI_trg.pal"

PaletteFile

PaletteFile points to a palette file. Built-in palettes can be referenced with the
following PaletteFile  values:

ISI_sysbld.pal Includes all of the default SystemBuild palettes.

ISI_sup.pal SuperBlock

ISI_alg.pal Algebraic

ISI_pwl.pal Piece-wise Linear

ISI_dyn.pal Dynamic

ISI_imp.pal Implicit

ISI_trg.pal Trigonometric

ISI_pel.pal Power Exponential Logarithmic

ISI_trn.pal Coordinate Transformation

ISI_sgn.pal Signal Generator

ISI_log.pal Logical

ISI_usr.pal User Programmed

ISI_kbb.pal Artificial Intelligence

ISI_ntp.pal Interpolation

ISI_sc.pal Software Constructs

ISI_mtx.pal Matrix Equations

ISI_iai.pal Interactive Animation (requires separate license)

ISI_arc.pal Archived (obsolete blocks)
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In addition to ISI palettes, PaletteFile can also be the path to a palette file. The
path can be in any of the following format:

1. An absolute path, such as c:\palettes\my.pal (Windows), or /homes/Sun-
Platform/users/usr1/palettes/my.pal  (UNIX).

2. A relative path from the location of the current palette file.

3. A path prefixed by an environment variable, such as
${PALETTE_PATH}\palettes\my.pal , or
%PALETTE_PATH%/palettes/my.pal where PALETTEPATHis the path to a pal-
ette file and BlockPath .

BlockDirectory

The block directory is used to specify native ISI blocks and custom blocks (see
Section 18.2 on page 18-6.) To specify a default ISI block, simply prepend ISI onto
the name of the block. See Palette Icon on page 18-7 for hints on using graphics on
a custom palette.

18.1.3 Defining the Default SystemBuild Palette (startup.pal)

Instead of loading a custom palette file every time SystemBuild is started, you can
define a file named startup.pal which will be read automatically when System-
Build starts. When the palette browser is started, it looks for the filename star-
tup.pal  in different directories in the following order:

1. In the current working directory.

2. %HOME%\xmath\startup.pal on Windows or $HOME/xmath/startup.pal
on UNIX.

3. The path defined by the environment variable %PALETTE_PATH%on Windows,
or $PALETTE_PATHon UNIX. You must manually define PALETTE_PATHlocally;
it is not predefined at install.

4. The default SystemBuild palette directory, %SYSBLD%\palettes on Windows,
or $SYSBLD/palettes  on UNIX.
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EXAMPLE 18-4: Startup Palette file.

1. Copy the file example.pal (created in Example 18-1 on page 18-2) to star-
tup.pal .

2. Exit SystemBuild, then restart it.

You will see that the label Main now contains only the blocks you defined in star-
tup.pal . The default ISI palette is not loaded.

If you want to add the default ISI palette, add the following line to startup.pal :

palettefile="ISI_sysbld.pal"

18.2 Custom Blocks

This section describes how to create and instantiate custom blocks. A custom block
can start as one of the pre-defined blocks provided with SystemBuild, or a Super-
Block or component created from pre-defined blocks. A block is a good candidate for
becoming a custom block if you find yourself repeatedly setting the same parame-
ters for a given block type. With the Custom Block wizard, you can save block pa-
rameters as part of a custom block definition.

18.2.1 What Kinds of Blocks Can Be Customized?

Any block, SuperBlock, STD, DataStore, or Component present in the SuperBlock
Editor may be defined as a custom block.

Basic block If a block is selected, you may define any combination of labels, pa-
rameter values, datatypes or other block attribute to be the default
values for the custom block. If blocks such as UserCode Blocks are
used, the source file and other dependent files are stored with the cus-
tom block.

SuperBlock If a SuperBlock is used for the custom block, the entire SuperBlock hi-
erarchy is included.

STD The custom block will contain the entire State Diagram.

DataStores DataStores are similar to basic blocks. You can define any DataStore
attribute to the default parameters of the custom block.

Components Components can be transformed to custom blocks. Parameter Sets
and a custom dialog may be associated with the component.
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18.2.2 Additional Custom Block Features

In addition to the basic features listed above, each custom block may optionally
have defined a startup file, a bitmap that appears in the palette browser, and a cus-
tom help file.

Startup Files

When a custom block is instantiated, an optional MathScript function defined by
the custom block can execute. This allows ‘last minute’ customization of the block
before it is drawn in the editor window. The Startup Function must have the follow-
ing interface:

function [result] = funName(sbname, blkid)

....function body.....

endfunction

NOTE: The root name of the startup file and the startup function must be the
same as the name of the custom block.

Palette Icon

Blocks on the custom palette can be assigned a bitmap for display in the palette
browser. (Note, the icon that appears on the block in the SystemBuild editor is as-
signed when the custom block is defined. Custom icons created with IA will not dis-
play on the palette.) If the custom block imports a bitmap image, there is no cross-
platform restriction; SystemBuild will display any of the accepted bitmaps (a .gif,
.jpg, .bmp, or .xpm file) on any platform.

CAUTION: Although the SystemBuild editor displays all supported bitmaps
on any SystemBuild platform, icon file paths in palettes are plat-
form dependent.
If you have an incompatible path in a palette file, you will not be
able to instantiate your block in the SystemBuild editor because
the icon file cannot be found.

You can use the same icon file for display in the editor and the palette as long as rel-
ative paths are used. If relative paths are properly used, custom blocks and palettes
can be shared across platforms.

For example, look at the directory structure in Figure 18-1 on page 18-8. The pal-
ette file is the parent, and a custom block resides in a subdirectory. Both the cus-
tom block and the palette file (shown in the overlay) can use a relative path to refer
to the icon. This hierarchy will work across platforms whenever the top of the hier-
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archy (in this case /palettes) is the current working directory. The current working
directory is set in Xmath before SystemBuild is started:

Note, although the custom block process copies the file bitmap to the block direc-
tory, you cannot get rid of the directory the image came from; the block looks in the
location specified on the Icon tab.

Help Files

File that appears when help is requested for the custom block.

18.2.3 Creating a Basic Custom Block

This section describes the procedure to create a basic custom block. Subsequent
sections will show how to create custom blocks with startup, help, and custom icon
files.

Creating and using custom blocks is a three step process. First, use the Custom
Block Wizard to create the custom block. The results of this step are stored in a di-
rectory defined by data entered in the wizard. Second, modify a custom palette file
to include the new custom block. Third, load and display the custom palette file in
the palette browser.

FIGURE 18-1 Sample Directory Structure where Palette File Uses Custom
Block Graphic

blockdirectory = "./blocks/csi2" icon = "./blocks/blockImages/csi2.xpm"
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1. Create a custom block using the Custom Block Wizard:

a. In the SystemBuild Editor, create or select a block that has the properties
you want to reuse.

b. Select Edit → New Custom Block... to bring up the Custom Block Wizard. The
Custom Block Wizard displays multiple panels to specify information about
the custom block related files.

c. By default the Block Name field of the Custom Block Wizard shows the name
of the block selected in the editor. You can accept or change this name; if no
name is specified, the wizard displays the block type in the name field. The
block name will be used to name a subdirectory in the directory specified in
Parent Directory .

d. On the Parent Directory field, type in the location where the new custom block
subdirectory will be created. The default is the current Xmath working di-
rectory. If you want your files to be portable, specify a relative path (as dis-
cussed in Palette Icon on page 18-7, and as shown in Figure 18-2). Press
Return  to update the Parent Directory  field.

e. Select one or more fields to indicate you have auxiliary files you want in-
cluded in the block.

FIGURE 18-2 Custom Block Wizard Fields
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f. Click Next if you have auxiliary files, otherwise click the Finish button. The
Custom Block Wizard will create a new directory to contain any custom
block files.

2. Add your custom block to a custom palette file (a text file with a .pal exten-
sion):

Using the syntax discussed in Section 18.1.2 on page 18-3, define a single line
in the custom block palette file for each new block. For example the following
string should be on one line:

blockdirectory = "./blocks/csi2" icon = "./blocks/blockImages/csi2.xpm"

3. Load the custom palette file into the palette browser.

EXAMPLE 18-5: Simple Custom Block Example

For your first custom block, create a custom gain block.

1. Create a new SuperBlock. Add a gain block to the SuperBlock. Name the block
customgain  and make the gain value 100 . Don’t worry about connections.

2. Select the gain block, then select Edit→New Custom Block.

The Custom Block Wizard appears. Deselect any of the check boxes currently
selected in files area. Enter mygain for the Block Name. Enter a valid name for
the Parent Directory (for example, ./blocks ). Click Finish . The new custom
block directories will be created within the Parent Directory, for example,

current-working-directory/blocks/mygain

3. Modify or create the palette file example.pal . Add the following lines to the file:

blockdirectory="./blocks/mygain"
blockdirectory="./blocks/mygain" title = "gain100"

Start the palette browser, and load the file example.pal from examples 18-1
and 18-2. Your new custom block file appears under the label example .

The custom block appears twice in the palette: the first block displays the name
of the directory, because no title was specified. The second block displays the
string specified with the title keyword.

4. Drag the custom block off the palette into the SystemBuild editor window.
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18.2.4 Creating More Sophisticated Custom Blocks

If the custom block has other files (such as C files, startup files, bitmap files, cus-
tom help files, etc.) associated with it, the Custom Block Wizard requires additional
information about the files.

Step 1: Create a Custom Block Using the Custom Block Wizard

1. When the Custom Block Wizard appears, a set of toggle buttons are displayed in
the lower section of the window. Specify the name and directory for your custom
block, as outlined in the previous section. Click Next > until the appropriate page
appears. The following types of files can be attached to a custom block:

● Dependent File : The files that are associated with a User Code Block (UCB) or a
BlockScript block etc. can be specified in this section. You can specify the
platform dependency by selecting the Platform combination box to specify the
appropriate platform for the selected files.

● Custom Help File : HTML files that form the help for the custom block. Since
these files are platform-independent, the Platform combination box will not
be available while specifying these files. Help can be a file hierarchy, com-
plete with graphic files. The name of the top-level help file should be
block_name.html , where block_name is the name of the block. If the
name of the top-level file is not same as the block name, then its name must
be specified in the palette file as described in “Step 2: Add a Custom Block
to a Custom Palette File.”

● Icon File : Icon displayed for the custom block while it is in the editor (custom
icons do not appear in the Editor). You cannot use the Platform combo box for
icon files. Files with the extension.BMP will be used in the Windows envi-
ronment, while files with the extension .XPM will be used on all UNIX plat-
forms.

● Parameter Set : One or more files containing values pertinent to the block. Pa-
rameter sets allow a user to select different prespecified values for the
block. A custom block can have multiple parameter sets.

● MathScript File : An optional MathScript Function (MSF) file having the same
name as the custom block. For example, if the custom block is called “en-
gine ”, then this MSF file must be called “engine.msf ”. This file can be
used to further customize the custom block during instantiation. See Sys-
bldEvent on page 18-15.
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2. On the appropriate file list page, click the Browse... button. This will bring up the
file dialog and will allow you to select the file that will be added to the list. Once
you select the file to be added to the list and press OK, the full path name of the
file will be displayed in the Custom Block Wizard. Click the Add button to add
this selected file to the list. Alternatively, type in the full path to the file directly
in the Custom Block Wizard.

To delete a file from the list single click on the file entry, then click the Delete
button.

3. Click the Next > button to add other files. Click the Finish button, or, click the Can-
cel button to cancel the process.

Step 2: Add a Custom Block to a Custom Palette File

blockdirectory = BlockName [[keyword=value] [keyword=value]...]

The valid keywords are:

Some examples for the syntax of the block objects are:

ISI_gain
../custGain
/homes/pal/custGain title="Gain"
c:\users\user1\palettes\custGain title="Gain"
/homes/pal/blkdir  block="sig_1.blk" icon="sig_1.platform"

Remember to use a relative path if portability is required.

title Specifies the title of the block to be displayed in the editor.

block Specifies the block file to be loaded for the block object to be displayed. This
is necessary if you have multiple block files in the custom block directory.

help Specifies the help file to be used for displaying help for the custom block.
The default name of the help file is block_name.html . A file specified us-
ing this keyword takes precedence over a default help file.

icon Specifies the bitmap shown for the block while it is on the palette. This file
can be platform dependent. If the filename is specified as name.platform ,
then the name will automatically be expanded to name.bmp on Windows
platforms, and name.xpm  on UNIX platforms.
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Step 3: Load the Custom Palette File

Load the custom palette file into the palette browser.

EXAMPLE 18-6: Custom Block Example with Startup File

We’ll now extend the simple gain custom block to include a startup file. The startup
file and the custom block must have the same root name. The startup file will sim-
ply change the color of the block based on user input.

1. In your local directory, create a text file named file startgain.msf that con-
tains the following lines into the file:

function [result] = startgain(sbname, blkid)
color = getchoice("Choose a color:", ["red", "green"]);
modifyblock blkid, {color = color};

endfunction

This function will raise a dialog to prompt you for a block color whenever the
“startgain” custom block is dragged off the palette.

2. Create a test SuperBlock. Add a gain block to the SuperBlock. Name it “start-
gain” and set the value of the gain to 100.

3. Select the gain block. Select Edit→New Custom Block...

The Custom Block Wizard appears. Make sure Startup (MSF) is selected in the
first screen. Deselect any other options. Enter “startgain ” for the Block Name.
Enter a valid name for the parent directory (for example, ./blocks .)

Click on Next. In the Startup Files dialog, Enter the path to the file start-
gain.msf . Select Add  to complete the selection.

Click Finish . The new custom block directories will be created within the parent
directory. The file startgain.msf  is also copied to the custom block directory.

4. Edit an existing palette file to include helpgain. Start the palette browser, and
load the file example.pal . Your new custom block file will be under the label
example .

5. Drag the custom block off the palette into the SystemBuild editor window. A
small Xmath dialog will appear. Enter one of the options, and hit OK. The gain
block with the appropriate color is drawn in the editor window.
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EXAMPLE 18-7: Simple Custom Block with Help

We’ll now extend the simple gain custom block to include a help file. Like the star-
tup file, the help file must have the same root name as the block.

1. In your local directory, edit the file helpgain.html . Enter the following lines
into the file:

<pre>
Hello world. This is help for my helpgain block.
</pre>

Save the file. Note, the extension should be .html (.htm is not accepted on all
systems).

2. Create a new SuperBlock. Add a gain block to the SuperBlock and give it some
unique properties: blockname = "helpgain" , gain = 99 .

3. Select the gain block. Select Edit→New Custom Block...

The Custom Block Wizard appears (it might be hidden behind other windows.)
Make sure Custom Help is selected in the first screen. Deselect any other options.
Enter “helpgain ” for the block name. enter a valid name for the parent direc-
tory.

Click on Next. The dialog prompting for help file name appears. Enter the path to
the file helpgain.html  (or use the browser).

Click Add , then click Finish . The new custom block directories will be created
within the parent directory. Your simple help file will be copied to the help sub-
directory in the custom block directory.

4. Modify or create the palette file example.pal . Add the line to the file:

blockdirectory="path-to-your-custom-block"

Start the palette browser, and load the file example.pal . Your new custom
block appears under the label example .

5. Drag the custom block off the palette into the SystemBuild editor. Open the
block dialog for the custom block. Click on Help. Your HTML help text will be dis-
played in a local help window.
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18

18.3 Supporting Commands and Functions

Custom blocks can also be manipulated with commands and functions issued from
the Xmath command area.

18.3.1 SystemBuild Access Support

The following SBA commands accommodate custom blocks and palettes. For a com-
plete description of each command, see the online help.

18.3.2 SystemBuild Utilities (sysbldEvent, sysbldRelease)

SysbldEvent

answer = sysbldEvent (event, mode, {MSFName});

sysbldevent lets you register Xmath MSFs to be called for specific SystemBuild
events. The MSF called can replace or supplement an action normally performed by
SystemBuild. SysbldEvent  returns 0 for successful completion and 1 for failure.

SysbldEvent  has the following characteristics:

■ Only one MSF at a time can be associated with an event.

■ Once you enable a SystemBuild event, it is called each time that event is in-
voked.

CreateBlock Handles the instantiation of custom blocks. The palette  keyword is
used to specify a palette.

ModifyBlock Handles the modification of custom blocks. The customhelp keyword
allows you to specify the name of a help file.

QueryBlock This function can be used to query custom blocks.

event An event  must be specified; the value can be either BlockOpen  or
Navigate .

mode Assign a value to mode; 1 tells SystemBuild to send Xmath the event
specified by the event  parameter; 0 disables the event. If you are en-
abling an event and you have not specified a function to handle the
event, then the MSFName parameter is required.
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The following example shows the SysbldEvent  parameters.

SysbldEvent ("BlockOpen",mode=1,MSFName="UserBlockOpen");

When you try to open a block dialog from the editor, it calls Xmath, which calls the
MSF as follows:

UserBlockOpen("BlockOpen", block_id)

In the above example, block_id is the number of the block selected in the editor. In
the MSF UserBlockOpen , the user can use SBA to query or modify the model.
Then, if the user returns 0 from the MSF, the editor displays the dialog. If the user
returns a 1, the editor continues without displaying the dialog.

As soon as the SystemBuild Editor issues the event to be handled to Xmath, all user
actions in the editor are disabled. When the MSF returns, the editor is enabled. Dis-
abling the UI ensures that no conflict exists between the user input and any editor-
interactive commands, such as SBA, issued by the MSF.

SysbldRelease

During a SysbldEvent callback you are prevented from interacting with the editor.
The SysbldRelease function is used to release the editor when the callback no
longer needs it. SysbldRelease can also be used if the user interface becomes
locked and does not release during SysbldEvent  operations.

MSFName A string containing the name of an Xmath MSF that handles the spec-
ified event .

The Xmath MSF must accept two parameters: block_id  and event ,
where block_id  is the block identification number of the block se-
lected by the editor, and event is the same event specified by the call-
ing SysbldEvent  command.

The return value from this MSF is 0 or 1, where 0 has SystemBuild
continue by handling the event which was passed to this MSF and 1
has SystemBuild continue by ignoring the event.
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Technical Support and Professional Services

Visit the following sections of the National Instruments Web site at 
ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions, 
visit our extensive library of technical support resources available 
in English, Japanese, and Spanish at ni.com/support. These 
resources are available for most products at no cost to registered 
users and include software drivers and updates, a KnowledgeBase, 
product manuals, step-by-step troubleshooting wizards, 
conformity documentation, example code, tutorials and 
application notes, instrument drivers, discussion forums, 
a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other 
measurement and automation professionals by visiting 
ni.com/support. Our online system helps you define your 
question and connects you to the experts by phone, discussion 
forum, or email.

• Training—Visit ni.com/training for self-paced tutorials, videos, 
and interactive CDs. You also can register for instructor-led, hands-on 
courses at locations around the world.

• System Integration—If you have time constraints, limited in-house 
technical resources, or other project challenges, NI Alliance Program 
members can help. To learn more, call your local NI office or visit 
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact 
your local office or NI corporate headquarters. Phone numbers for our 
worldwide offices are listed at the front of this manual. You also can visit 
the Worldwide Offices section of ni.com/niglobal to access the branch 
office Web sites, which provide up-to-date contact information, support 
phone numbers, email addresses, and current events.


	SystemBuild User’s Guide
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	Using This Manual
	Chapter 1 Introduction
	1.1 Overview

	Chapter 2 Starting SystemBuild and Using the Catalog Browser
	2.1 Starting and Exiting SystemBuild
	2.2 Loading Data
	2.2.1 Xmath Load Command
	2.2.2 Catalog Browser Load Dialog

	2.3 Understanding Catalogs
	2.4 Browsing a Catalog
	2.5 Saving Data
	Xmath SAVE Command
	Catalog Browser Save Dialog
	SystemBuild AutoSave Feature

	2.6 Accessing the SystemBuild Editor
	2.6.1 Using the Catalog Browser Quick Access Menu
	2.6.2 Opening a SuperBlock in the Editor
	2.6.3 Dragging and Dropping in the Catalog Browser
	2.6.4 Creating a New SuperBlock

	2.7 Updating Catalog Browser Data
	2.8 Editing Catalogs Using the Catalog Browser
	2.8.1 Using the Tools Menu
	2.8.2 Modifying a Catalog


	Chapter 3 Editing SuperBlocks
	3.1 SuperBlock Hierarchies
	3.1.1 SuperBlocks and Functional Blocks

	3.2 Creating SuperBlocks
	3.2.1 Creating a New SuperBlock from the Catalog Browser
	3.2.2 Making a New SuperBlock from Existing Blocks

	3.3 SuperBlock Dialogs
	3.3.1 SuperBlock Properties Dialog
	Attributes Tab
	Code Tab
	Inputs Tab
	Outputs Tab
	Document Tab
	Comment Tab

	3.3.2 SuperBlock Block Dialog

	3.4 Creating a SuperBlock Reference
	Creating a Reference from the Catalog Browser
	Creating a Reference from the Editor
	3.4.1 Creating a Copy of a SuperBlock
	Creating a Copy with Copy and Paste
	Creating a Copy by Modifying the SuperBlock Properties

	3.4.2 Using Rename
	Replacing a SuperBlock with Catalog Browser Rename
	Creating a Copy with Rename



	Chapter 4 Editing Blocks
	4.1 Creating Blocks
	4.2 Block Dialog Elements
	4.3 Block Dialog Fields
	4.3.1 Parameters
	4.3.2 Code
	4.3.3 Inputs
	4.3.4 Outputs
	4.3.5 States
	4.3.6 Document
	4.3.7 Comment
	4.3.8 Icon
	4.3.9 Display
	Input Pins/Output Pins Display Mode
	Show Labels
	Propagate Labels
	Icon Color
	Icon Type


	4.4 Using Block Dialogs
	4.4.1 Using the Matrix Editor
	Entering a Matrix
	Editing a Matrix

	4.4.2 Specifying Labels or Names
	SuperBlock External Input Labels
	Creating Sequential Names for Vectors or Matrices
	Shortcuts for Editing Labels or Names


	4.5 DataTypes
	4.5.1 Traditional Datatypes
	4.5.2 Datatype and Typecheck Example
	4.5.3 Traditional Datatyping Example
	4.5.4 Datatyping Rules

	4.6 Connecting Blocks
	4.6.1 Connection Rules
	4.6.2 Creating Connections
	Creating a Simple Connection
	Using the Connect Menu
	Using the Connection Editor

	4.6.3 Automatic and Manual Connection Routing

	4.7 Modifying Block Diagram Appearance
	4.8 Example
	4.9 Special Blocks
	4.9.1 Conditional Execution (Condition, IfThenElse Blocks)
	4.9.2 Repetitive Execution (While, Break Blocks)
	4.9.3 Terminating Execution (Stop Block)
	4.9.4 Execution Ordering (Sequencer Block)


	Chapter 5 SuperBlocks and SuperBlock Transformations
	5.1 Continuous SuperBlocks
	5.2 Discrete SuperBlocks
	5.3 Triggered SuperBlocks
	5.4 Procedure SuperBlocks
	5.4.1 Standard Procedures
	5.4.2 Macro Procedure
	5.4.3 Inline Procedure
	5.4.4 Background Procedure
	5.4.5 Startup Procedure
	5.4.6 Interrupt Procedure
	5.4.7 Asynchronous Procedure Execution
	5.4.8 Limitations of Asynchronous Procedures

	5.5 File SuperBlocks
	5.6 Timing Considerations
	5.7 Simulation Timing Properties
	5.7.1 At Next Trigger (ANT)
	5.7.2 At Timing Requirement (ATR)
	5.7.3 As Soon As Finished (SAF)
	5.7.4 Asynchronous (ASYNC)

	5.8 Subsystem Priorities
	5.9 AutoCode Timing Properties
	5.10 SuperBlock Transformation
	5.10.1 Transformation Limitations and Implications
	Limitations
	Dynamic Blocks
	Gain Block
	Integrators and PID Controller


	5.11 Transformation Methods
	5.11.1 Transformation Using the Transform SuperBlock Dialog
	5.11.2 Transformation Using the SuperBlock Properties Dialog Box
	5.11.3 Initial Condition Transformations
	5.11.4 Undoing a Transformation


	Chapter 6 SystemBuild Customization
	6.1 user.ini File Format
	6.2 Printer Settings (UNIX)
	6.3 Default Text Editor
	6.4 Comment Editor
	6.5 Custom Menus
	6.5.1 A Sample user.ini that Calls MSCs
	6.5.2 A Typical Template for User Menus

	6.6 SystemBuild Resource File (UNIX)
	6.6.1 Controlling Colors
	Foreground and Background
	SystemBuild and ISIM Color Settings

	6.6.2 Resizing, and Repositioning the Display


	Chapter 7 Simulator Basics
	7.1 Introduction
	7.1.1 Simulation User Interfaces
	7.1.2 SystemBuild Editor Simulation Interface
	7.1.3 Xmath Simulation Interface
	Sim Function Syntax
	Background Simulation
	Simulator Termination


	7.2 Parameterization
	7.2.1 The Simulation vars Keyword
	7.2.2 Parameter Variable Scoping

	7.3 SystemBuild Keyword Default Options
	7.4 Operating System Command Line Simulation Interface
	7.5 Analyze Function
	7.5.1 Analyze from the Xmath Command Area
	7.5.2 Analyze from the SystemBuild Editor
	7.5.3 Automatic Analyze

	7.6 Algebraic Loops
	7.7 lin Function
	7.8 simout Function
	7.9 creatertf Command
	7.10 Selecting an Integration Algorithm
	7.10.1 Integration Algorithms
	7.10.2 Integration Algorithm Recommendations

	7.11 Simulation Errors
	7.11.1 Simulation Software Errors
	7.11.2 Hardware Errors
	7.11.3 Operating System Errors

	7.12 Scheduler
	7.12.1 Subsystems
	Processor Group ID
	Subsystem Scheduling
	Continuous Subsystem Scheduling
	Discrete Subsystem Scheduling
	Properties of Discrete Scheduled Subsystems
	Simulation actiming Option Scheduling


	7.13 Simulation Time Lines, Inputs, and Outputs
	7.13.1 The Input Time Line
	7.13.2 The Internal Time Line
	7.13.3 Computing External Input Values
	7.13.4 The Output Time Line


	Chapter 8 Interactive Simulation
	8.1 The Interactive Simulation Process
	8.2 The ISIM Window
	8.3 Special Notes on ISIM
	8.4 sim Keywords for ISIM
	8.5 Standard Animation Icons
	8.5.1 Strip Chart Display Icon
	8.5.2 Multiple Line (Bar Graph) Icon
	8.5.3 LED Digital Monitoring Display Icon
	8.5.4 Numeric Display Icon
	8.5.5 In/Out Pushbutton Switch
	8.5.6 Text Icon
	8.5.7 Slide Output Controller Icon

	8.6 Using ISIM
	8.6.1 Building the ISIM Car Model
	8.6.2 Simulating the Car Model

	8.7 Run-time Variable Editor
	8.7.1 RVE and ISIM
	8.7.2 RVE Commands and Functions
	8.7.3 RVE-Compatible Blocks


	Chapter 9 Linearization
	9.1 Linearization
	9.2 Linearizing Single-Rate Systems About an Initial Operating Point
	9.2.1 Continuous Systems
	Explicit Form
	Implicit Form

	9.2.2 Discrete Systems

	9.3 Exact vs. Finite Difference Linearization
	9.4 Special Linear Models
	9.4.1 Continuous Time Delay
	9.4.2 State Transition Diagrams
	9.4.3 FuzzyLogic Block
	9.4.4 Integrator Block (Resettable)
	9.4.5 UserCode Blocks
	9.4.6 Procedure SuperBlocks Referenced from Condition Blocks

	9.5 Linearizing About a Final Operating Point
	9.6 Multirate Linearization
	9.6.1 Interpretation of Multirate lin Results
	9.6.2 Linearizing Fixed-point Blocks
	9.6.3 References

	9.7 Trim
	9.7.1 trim Syntax
	9.7.2 trim Algorithm
	9.7.3 trim Behavior
	Stability
	Free Integrators
	Algebraic Loops and trim

	9.7.4 trim Examples


	Chapter 10 Classical Analysis
	10.1 Classical Analysis Tools
	10.2 Classical Analysis Tools Process
	10.3 Open-Loop Frequency Response
	10.4 Time Response
	10.5 Point-to-Point Frequency Response
	10.6 Root Locus
	10.7 Parameter Root Locus

	Chapter 11 Advanced Simulation
	11.1 Explicit vs. Implicit Models
	11.1.1 Explicit Models
	11.1.2 Implicit Models
	Implicit Model Constraints
	Implicit States and Implicit Outputs
	Implicit Outputs
	Initialization

	11.1.3 Implicit Model Examples

	11.2 Operating Points
	11.2.1 Continuous Subsystem
	11.2.2 Discrete Subsystems

	11.3 Inserting Initial Conditions
	11.4 Use of sim, lin, simout for Implicit UCBs
	11.5 Matrix Blocks in the Simulator
	11.6 Sim Integration Algorithms
	11.6.1 Comparing Integration Algorithms
	11.6.2 Overview of the Algorithms
	Euler Integration Method
	Second Order Runge-Kutta (Modified Euler) Method
	Fourth Order Runge-Kutta Method:
	Fixed-Step Kutta-Merson Method
	Variable-Step Kutta-Merson Method
	Stiff System Solver (DASSL)
	Variable-Step Adams-Bashforth-Moulton Method
	QuickSim Method
	Over-determined Differential Algebraic System Solver (ODASSL)
	Gear’s Method


	11.7 Absolute and Relative Tolerances
	11.7.1 Variable-Step Kutta-Merson Method
	11.7.2 Stiff System Solvers (DASSL and ODASSL)
	11.7.3 Variable-Step Adams-Bashforth-Moulton Method
	11.7.4 Computing the Maximum Integration Stepsize in Variable-Step Integration Algorithms

	11.8 Sample Simulation
	11.9 State Events
	11.9.1 ZeroCrossing Block
	11.9.2 Continuous UserCode Blocks
	Restrictions and Limitations

	11.9.3 Example


	Chapter 12 BlockScript
	12.1 Introduction
	12.1.1 The Block Paradigm
	12.1.2 BlockScript Program Structure

	12.2 BlockScript Variables
	12.2.1 Block Variable Declarations
	12.2.2 DataTypes and Dimensions
	Wildcard Dimensions and Dialog Imported Information
	Method for Implied Datatyping
	BlockScript Datatypes and Code Generation


	12.3 The BlockScript Language
	12.3.1 Operators and Precedence
	12.3.2 Assignment Statements and Expressions
	12.3.3 Looping Constructs
	12.3.4 Functions
	12.3.5 Environment Variables

	12.4 Debugging Tips
	12.5 Compiling BlockScript Blocks
	12.6 Examples
	12.6.1 Bessel Equation BlockScript Block
	12.6.2 Discrete PID Controller BlockScript Block
	12.6.3 Three-Cycle Delay Script
	12.6.4 Linear Interpolation Algorithm Script
	12.6.5 Hysteresis Script


	Chapter 13 SystemBuild Access (SBA)
	13.1 Overview
	13.2 Xmath Syntax Review
	13.2.1 Command Syntax
	13.2.2 Function Syntax
	13.2.3 Inputs, Optional Inputs, and Keywords

	13.3 Basic SBA Tasks
	13.3.1 Create
	13.3.2 Query
	13.3.3 Modify
	13.3.4 Display
	13.3.5 Delete
	13.3.6 Sample Scripts

	13.4 Using SBA
	13.4.1 Keyword Ordering
	13.4.2 Block Parameters
	13.4.3 Error Handling
	13.4.4 Input Formats
	13.4.5 SuperBlock Editor Coordinate System

	13.5 Tutorial
	13.5.1 Building the Predator-Prey Model
	13.5.2 Simulating the Predator-Prey Model


	Chapter 14 UserCode Blocks
	14.1 Introduction
	14.2 The Structure of UCBs
	14.2.1 Explicit UCBs
	14.2.2 Implicit UCBs
	14.2.3 Implicit UCB Implementation
	14.2.4 Implicit UCBs and sim, lin, or simout
	14.2.5 Input Direct Terms
	14.2.6 State Events
	14.2.7 The Simulation API
	14.2.8 Using the SIMAPI to Gather UCB Reference Information
	14.2.9 Using the SIMAPI to Access and Modify Variables
	14.2.10 Using the SIMAPI to Access Simulation Debugging Information
	14.2.11 Using and Managing the Debugging Access Functions
	14.2.12 Integration Algorithm Updates
	Other Issues and Notes

	14.2.13 SIMAPI Debug UserCode Block Example
	14.2.14 USR01 and IUSR01 Template
	14.2.15 Explicit UserCode Function Calling Arguments
	14.2.16 UserCode Function Arguments

	14.3 Variable Interface UserCode Blocks
	14.3.1 Overview
	14.3.2 Using a Wrapper so that SystemBuild Can Simulate Code Written for AutoCode
	14.3.3 Writing a Wrapper
	Converting Data From the SIM Interface
	Converting Data Back to the SIM Interface

	14.3.4 Specifying the Variable Interface
	Setting Variable Interface Parameters
	Specifying Datatypes
	Specifying Input Shapes
	Specifying Output Shapes

	14.3.5 Running a Variable Interface Example

	14.4 UCB Programming Considerations
	14.5 Building, Linking and Debugging UCBs
	14.5.1 Collecting UserCode Files
	UCB Block Parameter Form
	CSOURCE and FSOURCE
	Specifying Sources in the makefile
	Reusing Sources from the Previous Simulation
	Specifying Another Location for UCB Code

	14.5.2 Compiling and Linking User Code
	14.5.3 Debugging User Code

	14.6 Posting Error Indications

	Chapter 15 Fixed-point Arithmetic
	15.1 Introduction to Fixed-point Arithmetic
	15.1.1 Fixed-point Number Representation
	15.1.2 Conversion Between Fixed-point Numbers
	15.1.3 Addition and Subtraction
	15.1.4 Multiplication
	15.1.5 Division
	15.1.6 Relational Operations
	15.1.7 Overflow

	15.2 SystemBuild Fixed-point
	15.2.1 User Interface
	15.2.2 Simulator
	15.2.3 Building a Model and Demonstrating Overflow
	15.2.4 Comparing Fixed- and Floating-Point Numbers
	15.2.5 Comparing the Effects of Different Conversion Sequences

	15.3 Fixed-point Blocks and I/O Datatype Rules
	15.3.1 Advanced Simulation Topics
	Intermediate Types
	Simulation Issues
	32-bit Operation Issues
	Gain Block: A Special Case

	15.3.2 Radix Calculations

	15.4 MinMax Data Logging
	15.4.1 Activating MinMax Logging
	Simulating with the minmax Keyword
	Saving MinMax Datasets to a File

	15.4.2 MinMax Display Tool

	15.5 User-Defined Data Types (Usertypes)
	15.5.1 Usertype Editor
	15.5.2 Usertype MathScript Commands
	15.5.3 Using Usertypes in SystemBuild
	15.5.4 Storing Usertypes

	15.6 SystemBuild Functions in Fixed-point
	15.6.1 Linearization Function
	15.6.2 Simout Function

	15.7 Scaling Aid Blocks

	Chapter 16 Building Custom Icons
	16.1 IA Basics
	16.1.1 Adding a Custom Icon to a Block Diagram
	16.1.2 Sample Icon Source

	16.2 Defining Custom SystemBuild Icons
	16.2.1 Importing or Referencing an External Bitmap
	16.2.2 Creating or Attaching an IA Source Icon

	16.3 An Icon Source File
	16.3.1 Icon Identification
	16.3.2 Types
	Integer Types
	Real Types
	String Types

	16.3.3 General Control and Calculation Statements
	16.3.4 General Graphic Statements and Coordinate System
	16.3.5 General Graphic Characteristic Statements
	16.3.6 Animation Statements
	16.3.7 Pointer Action Statements
	16.3.8 Palette Definition

	16.4 animation.cfg
	16.4.1 Important animation.cfg Keywords for Customized Icons
	16.4.2 icon.src Field for Customized Icons and New Palettes

	16.5 Procedure for Building Your Own IA Custom Icons

	Chapter 17 Components
	17.1 Introduction
	17.1.1 Component Scope
	17.1.2 Component Interface
	17.1.3 Component Parameter Sets
	17.1.4 Component References
	17.1.5 Component Access
	Open Components
	Encrypted Components
	Licensed Components


	17.2 Using Components in SystemBuild Models
	17.2.1 Viewing Components
	17.2.2 Creating References to Components
	17.2.3 Controlling Component Parameters
	17.2.4 Loading Component Parameter Sets
	17.2.5 Changing Scope into a Component Catalog
	17.2.6 Simulating Models with Components

	17.3 Creating Components
	17.3.1 Restrictions on Component SystemBuild Hierarchies
	17.3.2 Understanding Parameterization of Components
	17.3.3 Understanding the Component Scope
	17.3.4 Mapping Exported Variables
	17.3.5 Customizing the Component Dialog
	17.3.6 Documenting the Component
	17.3.7 Creating Components Using the Component Wizard
	17.3.8 Modifying Components
	17.3.9 Unmaking a Component

	17.4 Creating and Using Parameter Sets
	17.5 Using SBA with Components
	17.6 Distributing SystemBuild Components
	17.7 Examples
	17.7.1 Encapsulating a SuperBlock Hierarchy
	17.7.2 Exporting Component Parameters
	17.7.3 Using the Parameter Set Interface
	17.7.4 Interface Mapping
	17.7.5 Using a Custom Dialog


	Chapter 18 Palettes and Custom Blocks
	18.1 Custom Palettes
	18.1.1 Creating Palette Files
	18.1.2 Palette File Syntax
	PaletteFile
	BlockDirectory

	18.1.3 Defining the Default SystemBuild Palette (startup.pal)

	18.2 Custom Blocks
	18.2.1 What Kinds of Blocks Can Be Customized?
	18.2.2 Additional Custom Block Features
	18.2.3 Creating a Basic Custom Block
	18.2.4 Creating More Sophisticated Custom Blocks
	Step 1: Create a Custom Block Using the Custom Block Wizard
	Step 2: Add a Custom Block to a Custom Palette File
	Step 3: Load the Custom Palette File


	18.3 Supporting Commands and Functions
	18.3.1 SystemBuild Access Support
	18.3.2 SystemBuild Utilities (sysbldEvent, sysbldRelease)
	SysbldEvent
	SysbldRelease



	Index
	A-B
	C
	D-E
	F-I
	K-O
	P-R
	S
	T
	U
	V-Symbols

	Technical Support and Professional Services

